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Abstract. Table constraints and Multi-Valued Decision Diagrams (MDDs)
are very useful for modeling combinatorial constrained problems, and
thus play an important role in Constraint Programming (CP). During
the last decade, many algorithms have been proposed for enforcing the
property known as Generalized Arc Consistency (GAC) on such con-
straints. A state-of-the-art GAC algorithm called Compact-Table (CT),
which has been recently proposed, significantly outperforms all previ-
ously proposed algorithms for the extensional constraint.
In my thesis, we first extend the CT algorithm in order to deal with
basic smart table (i.e., tables with unary expressions such as = v, ∗, 6= v,
≤ v, ≥ v and ∈ S) and negative tables (i.e., tables containing conflicts
instead of solutions). The ideas behind Compact-Table are also used to
construct Compact-Diagram (CD), an algorithm handling MDDs and,
in general, any ordered layered diagram, with or without decision nodes.
Compact-Diagram is also extended to handle basic smart diagrams. Our
experimental results show the practical interest of our approaches.

Keywords: Compact-table, Bitwise operations, Table constraint, MDD
constraint

1 Introduction

Efficiently representing constraints under extensional forms such as tables and
decision diagrams has been a hot research topic for the last decade; concerning
MDDs (Multi-Valued Decision Diagrams), see e.g., [1–4, 9–11, 29]. Two main
lines of improvements have been followed when handling extensional forms of
constraints. Firstly, high effective filtering techniques have been proposed over
the years, such as those based on tabular reduction [14, 17] and bitwise operations
[8, 12, 34]. Secondly, compact representation techniques have been intensively
studied, mainly by allowing simple constraints to be put in tables as in [13, 20]
or by directly using decision diagrams such as MDDs [7, 23, 24].

My thesis consisted of studying the possibility to extend the Compact-Table
algorithm [8] to handle some of the compact representation. The main contribu-
tions of my Ph.D. thesis, summarised in this paper, are:

– an extension of CT to handle basic smart tables (CTbs) [32]
– an extension of CT to handle negative tables (CTneg) [33]
– an adaptation of CT to handle diagrams (CD) [30]
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– an extension of CD to handle basic smart diagrams (CDbs) [31]

The remainder of this paper is structured as follows. The next section recall
some background, then Section 3 briefly recalls the Compact-Table. Sections
4, 5, 6 and 7 respectively introduce the CTbs, the CTneg, the CD and CDbs

algorithms. Finally, the global results of the experiments are given in Section 8.

2 Technical Background

A constraint network is composed of a set of variables and a set of constraints.
Each variable x has an associated (ordered) domain dom(x) containing the val-
ues that can be assigned to it; the current domain is included in the initial
domain dom0(x). We respectively denote by min(x) and max(x) the smallest
and greatest values in dom(x). Each constraint c involves an ordered set of vari-
ables, called the scope of c and denoted by scp(c), and is semantically defined
by a relation rel(c) containing the tuples allowed for the variables involved in
c. The arity of a constraint c is |scp(c)|. When the domain of a variable x is
(becomes) singleton, we say that x is bound.

Given a sequence 〈x1, . . . , xr〉 of r variables, an r-tuple τ on this sequence
of variables is a sequence of r values 〈a1, . . . , ar〉, where the individual value
ai is also denoted by τ [xi]. An r-tuple τ is valid on an r-ary constraint c iff
∀x ∈ scp(c), τ [x] ∈ dom(x), and τ is allowed by c iff τ ∈ rel(c). A support of
c is a tuple which is both valid on c and allowed by c. A literal is a pair (x, a)
where x is a variable and a a value. A literal (x, a) is Generalized Arc-Consistent
(GAC) on c iff there is a support τ on c such that τ [x] = a. A constraint c is
GAC iff any literal (x, a) such that x ∈ scp(c) and a ∈ dom(x) is GAC on c.

A directed graph is composed of a set of nodes and a set of arcs. Each arc
has an orientation from one node, the tail of the arc, to another node, the head
of the arc. For a given node ν, the set of arcs with ν as tail (resp., head) is
called the set of outgoing (resp., incoming) arcs of ν. A labeled directed graph is
a directed graph such that a label l(ω) is associated with each arc ω. A node is
in-d (in-deterministic) iff it does not have two incoming arcs with the same label,
in-nd otherwise. A node is out-d (out-deterministic) iff no two outgoing arcs have
the same label, out-nd otherwise. A directed acyclic graph (DAG) is a directed
graph with no directed cycles. An MVD (Multi-valued Variable Diagram) [1] for
a constraint c (called an MVD constraint) is a layered DAG, with one special
root node at level 0, denoted by ROOT, r layers of arcs, one layer L(xi) for each
variable xi of the scope 〈x1, . . . , xr〉 of c, and one special sink node at level r,
denoted by SINK. The arcs in L(xi) going from level i − 1 to level i are on the
variable xi: any such arc is labelled by a value in dom0(xi). A valid path in such
an MVD is a path p from the root to the sink such that for each variable xi in
scp(c) the label of the arc going in p from level i− 1 to i is a value in dom(xi).
The set of supports of an MVD constraint c corresponds to the valid paths in
the MVD for c. One classical type of MVD is the Multi-valued Decision Diagram
(MDD) [6], which guarantees that each node is out-d (each node at level i has
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at most |dom0(xi)| outgoing arcs, labelled with different values), but possibly
in-nd.

3 Compact-Table

This section briefly introduces Compact-Table (CT), a state-of-the-art filtering
algorithm [8] initially introduced for enforcing GAC on positive (ordinary) table
constraints. It first appeared in Or-Tools [21], the solver developed at Google,
and is now implemented in OscaR [22], AbsCon and Choco [25]. CT benefits
from well-established techniques: bitwise operations [5, 18], residual supports [15,
16, 19], tabular reduction [14, 17, 28], reversible sparse sets [27] and resetting
operations [24].

The core structure of CT, when applied to a constraint c, is a reversible sparse
bitset, called currTable, responsible for keeping track of the current supports
of c: the ith bit of currTable is set to 1 iff the ith tuple τi of the table of c is
currently valid. It is updated by means of precomputed bitsets: for each value
(x, a) of c, supports[x, a] is the bitset that identifies the set of tuples that are
initially supports of (x, a) on c.

Algorithm 1 presents a simplified version of CT, which consists of two main
steps. First, updateTable(), iterates for each variable x involved in c over either
the set ∆x of values that have been removed from the domain of x since the last
invocation of the algorithm (incremental update) or the current domain of x
(reset update), and use the appropriate bitsets supports to update currTable

using bitwise operations. The incremental update is done by intersecting the
supports corresponding to the removed values. This intersection is then re-
moved from currTable. The reset update is done by intersecting the supports

corresponding to the remaining values. The negation of this intersection is then
removed from currTable. Secondly, filterDomains(), iterates over every value
(x, a) of c and use the corresponding bitset supports[x, a] to verify whether
the value is still supported or not. This is done by doing the intersection be-
tween currTable and supports[x, a]. An empty intersection corresponding to
an unsupported value.

In the experiments, described in [8], Compact-Table outperformed all the
previous state-of-the-art algorithms for table or MDD constraint such as STR2,
STR3, MDD4R,... However, when dealing with compressed tables or MDDs as
input, a decompression phase was required to use Compact-Table. The next
sections detailed the extensions of CT aiming to handle the basic smart tables
(one kind of compressed table) or MDDs as input while using their structure to
improve the propagation.

4 CTbs: Compact-Table for Basic Smart Tables

A basic smart table is composed of smart tuples containing expressions of the
following forms: ∗, <op> v, ∈ S and 6∈ S, with <op> ∈ {<,≤,=, 6=,≥, >}. We
need to extend CT (which handles only = v, often write only v in that case
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Algorithm 1: Class ConstraintCT
1 Method enforceGAC()
2 updateTable()
3 filterDomains()

4 Method updateTable()
5 updateMasks()

6 Method updateMasks()
7 foreach variable x ∈ {x ∈ scp : |∆x| > 0} do
8 if |∆x| < |dom(x)| then
9 IncrementalUpdate()

10 else
11 ResetUpdate()

Algorithm 2: updateMasks() from CTbs and CDbs

1 Method updateMasks()
2 foreach variable x ∈ {x ∈ scp : |∆x| > 0} do
3 if |∆x| < |dom(x)| and there is no ∈ S used for the variable then
4 IncrementalUpdate()
5 LowerBoundUpdate()
6 UpperBoundUpdate()

7 else
8 ResetUpdate()

for simplicity) to handle the smart tuples in a basic smart table. The resulting
algorithm is called CTbs. All the modification lies in the updateMasks() method
given in Algo. 2, and presented i a high level description.

Handling ∗ and 6= v

To handle ∗ and 6= v, only the incremental update requires modifications. Instead
of using supports, another bitset, called supports∗, is used. It is defined as
supports for tuple with = v and filled with 0 for other types of labels.

Correctness for expressions ∗ and 6= v is proved by showing that the table
is always properly updated. Let us cover all possible cases. When |dom(x)| = 0,
the solver detect the failure through the variables. For the case of the reset-
based update, as support precisely depicts the acceptance of values by tuples,
this is necessarily correct. In the incremental update, we will necessary have
|dom(x)| ≥ 2. This comes from the structure of the algorithm when the full
version, as described in [8], is used. In this case, the tuple is always support for
the given variable and as the corresponding bits in supports∗ are set to 0 by
construction, the tuple is not removed from currTable.
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Handling <op> v, with <op> ∈ {<,≤,≥, >}

First, note that it is sufficient to focus on expressions of the form ≥ v and ≤ v
since > v and < v are equivalent to ≥ v+ 1 and ≤ v− 1. We first introduce two
additional arrays of bitsets: supportsMin for ≤ v and supportsMax for ≥ v. For
each value (x, a) of c, the ith bit of supportsMin[x, a] (resp., supportsMax[x, a])
is 1 iff τi[x] allows at least one value ≥ a (resp., ≤ a).

To handle <op> v, with <op> ∈ {≤,≥}, a lower bound update and an upper
bound update are added in addition to the incremental update.

Correctness is shown for ≤ v, considering all cases at column x for tuple
τ . The case |dom(x)| = 0 is as trivial as in the last section. For the case of
the reset-based update, as supports precisely depicts the acceptance of values
by tuples, this is necessarily correct. Finally, in the incremental update (resp.
upper bound update), due to the constructions of the bitsets, i.e., the bit for τ
in supports∗ (resp. supportsMax) is always set to 0 (resp. 1), updating depends
only on supportsMin (lower bound update). By definition, if dom(x).min is
≤ v, meaning still supported, the bit for τ in supportsMin is 1, keeping τ in
currTable. If dom(x).min > v, bit for τ is 0, removing τ . Dealing with ≥ S can
be conducted similarly.

Handling ∈ S (and /∈ S)

There is no easy way to handle expressions of the form ∈ S using an update
based on the ∆. We then propose to systematically execute reset-based updates
as they do in [34] for passing from STRbit to STRbit-C. More precisely, as soon
as a variable is involved in an expression of the form ∈ S in one of the tuples of
the basic smart table, a reset-based update is forced. Dealing with /∈ S can be
conducted similarly.

5 CTneg: Compact-Table for Negative Tables

This section discusses the modifications brought to CT for dealing with negative
tables, i.e., tables containing conflict tuples. We keep working with the bitset
currTable that indicates which tuples from the initial table of c are still valid,
and we introduce bitsets conflicts that are computed the same way as bitsets
supports were. Simply, as the context is different, the meaning is different:
instead of permanently updating the table of supports in currTable through
bitsets supports, we permanently update the table of conflicts in currTable

through bitsets conflicts.
For filtering, the basic idea is to count for each value (x, a) of c how many

valid tuples containing (x, a) are in the current table of c (hence, representing
the number of conflicts for (x, a) on c) and to compare this number with the
number of valid tuples containing (x, a). When these two numbers are equal, it
simply means that all valid tuples containing (x, a) correspond to conflicts, and
consequently that no support for (x, a) on c exists. Computing, in the context
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of a constraint c, the number of valid tuples for any value in the domain of a
variable x is simple. This is:

Πy∈scp(c):y 6=x|dom(y)| (1)

When Method enforceGAC(), is called, the first step is to update the current
table, exactly as it is done for positive table constraints, except that the bitsets
conflicts are used instead of supports. For filtering domains, we verify whether
values have still support or not. We compute the number of bits set to 1 on the
bitwise intersection of currTable and conflicts[x, a] to compute the number
of conflicts for (x, a) on c. The rest of the algorithm is similar to CT.

6 Compact-Diagram: Compact-Table for the diagram
constraint

Compact-Diagram, or CD, is a filtering algorithm (propagator) that uses bitwise
operations for MVD constraints. It is based on some ideas behind both Compact-
Table [8] and MDD4R [24], a propagator for MDD constraints.

The idea is to keep track of the arcs that remain valid during the filtering
process; namely by introducing (reversible sparse) bitsets, one per layer of the
MVD (and so, per variable of the constraint). At layer i, one bit, in the bitset
currArcs[xi], is associated with each arc: when the bit is set to 1, it means that
the arc is considered as valid. This way, the current MVD, which can be seen as
a subgraph of the initial MVD, can be identified and used to remove the values
without any supports left.

To ease computations, at each level there are three types of precomputed
bitsets: these bitsets are never modified. First, supports[x, a] indicates for each
arc on the variable x regardless of whether the value a is initially supported by
this arc (bit is set to 1 iff a is supported). Second, arcsT[ν, x] and arcsH[x, ν′]
indicate for each arc on x whether ν and ν′ are respectively the tail and the head
of this arc. Finally, a temporary bitset mask[xi] is associated with each variable
xi to store the results of intermediate computations.

The pseudo-code for enforcing GAC on an MVD constraint is given by
Algo. 3, which is, for simplicity, a very simplified version of the one given in
[30]. In method updateGraph(), after initializing all masks, all arcs that can be
trivially removed are handled by calling updateMasks(). This method assumes
access to the set of values ∆x removed from dom(x) since the last call to enforce-
GAC()1. There are two ways of updating the masks (before updating currArcs

from these masks, later): either incrementally or from scratch after resetting. In
case of an incremental update, we perform the union of the arcs to be removed,
whereas, in case of a reset-based update, we perform the union of the arcs to
be kept, followed by a reverse operation. Next, we need to determine which arcs

1 In [26], a sparse-set domain implementation for obtaining ∆x without overhead is
described.



The Extensional Constraint 7

Algorithm 3: Class ConstraintCD
1 Method enforceGAC()
2 updateGraph()
3 filterDomains()

4 Method updateGraph()
5 updateMasks()
6 propagateDown()
7 propagateUp()

can be subsequently removed: this is achieved by calling the methods propagate-
Down() and propagateUp(), which, similarly to MDD4R, perform two passes on
the diagram. During the downward (resp., upward) pass, each level is examined
from the root (resp., sink) to the sink (resp., root). When there are no more
valid arcs entering (resp. exiting) a node, it becomes unreachable and all arcs
exiting (resp. entering) the node becomes invalid. Identifying unreachable nodes
is done by testing if the intersection between currArcs and arcsT (for outgoing
arcs) or arcsH (for incoming arcs) is empty.

The process of filtering domains is very similar to the one described in CT
[8]. This is given by method filterDomains() in Algo. 3. For each unbounded
variable x and each value a in dom(x), the intersection between the valid arcs
on x, currArcs[x], and the arcs allowing value a, supports[x, a], determines if
a is still supported. An empty intersection means that a can be deleted from
dom(x).

7 CDbs: Compact-Diagram for bs-MVDs

CD and CT are quite similar in terms of design. Both of them use the bitsets
called supports to respectively find the arcs and tuples that must be discarded.
The CTbs [32] algorithm, which can deal with bs-tables, was proposed as an
extension of CT, by only modifying the update procedure. In the same spirit,
we show how similar ideas can be reused to adapt the method updateMask() of
CD to define CDbs.

As in CTbs, in addition to bitsets supports, we introduce auxiliary bitsets:

– supports∗[x, a], the exclusive supports: for each arc for which the label of
arc ω is exactly a (’= a’), the bit is set to 1,

– supportsMin[x, a], the lower bound supports: for each arc which would be
still valid if the minimum of the domain was a, the bit is set to 1,

– supportsMax[x, a], the upper bound supports: for each arc which would be
still valid if the maximum of the domain was a, the bit is set to 1.

Algorithm 2 displays the method updateMasks() for the simple version of
CDbs. This is for Compact-Diagram a simple adaptation of the modifications
made to pass from CT to CTbs. Resetting (and recomputing) is performed when
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the number of removed values (i.e., values in ∆x) is too large by collecting the
supports of every value in the current domain or if there was some ∈ S expres-
sion used. Otherwise, an incremental update is performed. Notice that contrar-
ily to the reset-based update, one needs to also collect invalid arcs for opera-
tors in {<,≤, >,≥} using supportsMin (lower bound update) and supportsMax

(upper bound update). The time complexity of one call to updateMasks(), for
a given variable x, is Θ(dt) where t is the number of valid words and d is
min(|∆x|, |dom(x)|) if there was no ∈ S used and |dom(x)| if yes.

This is the simple version of CDbs. The optimized version, fully described in
the paper, strongly relies on a partition of the arcs at each level i.

8 Experimental Results

This section gives an overview of the results that we obtained from the experi-
ments carried out on the different algorithms. Only the big picture is given here.
For a more detailed analysis, see the papers [30–33].

The experiments about CTbs led to the following results: to overcome the
overhead of the additional operations, the basic smart table should contain more
than a few basic smart elements.

The negative table experiments showed an improvement in the resolution
time of CTneg in comparison to STRne (i.e., the negative table version of STR2).

On the diagram point of view, CD improved the timing of MDD4R. The
CDbs algorithm showed how the compression of the graph leads to a speedup.
However, when comparing the CD on the MDD to CT on the corresponding
table, CT is still outperforming the diagram-based propagation.

To conclude the experiments, introducing compression in the table allowed
us to reduce the search time on the problems. The introduction of the bitwise
technique to the diagram-based propagator allowed us to improve the timing.
The gap between the table-based and diagram-based method is reduced but still
existent.

9 Conclusion

The starting point of this thesis was the Compact-table algorithm. It was ex-
tended following three axes. First from table to basic smart table, secondly from
positive to negative tables and third from table to diagram. All the propagators
detailed were proven efficient on the tested benchmarks. For more details, we
refer the reader to papers [30–33].
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