
SolverCheck: Declarative Testing of Constraints ‹

Xavier Gillard1, Pierre Schaus1, and Yves Deville1

Université Catholique de Louvain, BE
{xavier.gillard, pierre.schaus, yves.deville}@uclouvain.be

Abstract. This paper introduces SolverCheck, a property-based test-
ing (PBT) library specifically designed to test CP solvers. In particular,
SolverCheck provides a declarative language to express a propagator’s
expected behavior and test it automatically. That language is easily ex-
tended with new constraints and flexible enough to precisely describe a
propagator’s consistency. Experiments carried out using Choco [38], Ja-
CoP [26] and MiniCP [32] revealed the presence of numerous non-trivial
bugs, no matter how carefully the test suites of these solvers have been
engineered.

Introduction

Constraint Programming (CP) owes much of its success to the declarative aspect
of its models and the expressiveness of its constraints. Obviously, CP wouldn’t
have been the achievement we all know if it weren’t for the efficiency of the
propagators that have been devised over the years to enforce some degree of
consistency for the constraints enlisted in the catalog [5]. E.g. alldiff [39], reg-
ular [37], element [23]. Nevertheless, the success of the tools developed in our
community remains fragile as results of a solver might be invalidated by a bogus
implementation of one single propagator. As it turns out, the algorithms and
data structures involved in those propagators are quite advanced and sometimes
rely on state-restoration mechanisms. This is why, ensuring the correctness and
robustness of their implementation is crucial to the success of CP as a whole.
However, checking the correctness of a propagator by focusing solely on the ab-
sence of solution removal is far from enough. Indeed, in order to be able to tackle
real world problems, it is essential that a solver be both correct and efficient.
In practice, the efficiency of a propagator is the result of a balance between the
strength of the enforced consistency and the complexity of the algorithm used to
implement it. Hence, being able to test the consistency level imposed by a prop-
agator becomes a necessity. Indeed, in the event where the consistency should
be weaker than announced, some problem instances might become intractable
and that intractability could hardly be analyzed or reasoned about.

In that context, we propose SolverCheck: an open-source property-based test-
ing (PBT) library inspired by QuickCheck [13] for Haskell. It has been specifically
‹ Massart and Rombouts have worked on a preliminary version of this work for their
MSc. thesis which we supervised. They presented it at the CP-2018 Doctoral Pro-
gramme [30].
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designed and engineered to improve the quality of the tests used to validate CP
solvers. In practice, SolverCheck makes it easy to both test the correctness of
the propagators and to test the level of consistency enforced by the latter. More-
over, SolverCheck aims at being an extensible framework. Therefore, it comes
with simple interfaces through which a user can easily describe the relation im-
posed by a new constraint. Concretely, this relation is described using a Checker,
a predicate deciding whether or not a tuple belongs to the constraint relation.
Similarly, the consistency level that can be tested needs not necessarily be one
of the classical consistency level (DC, BC(D), BC(Z), RC, FC)[6] as Solver-
Check permits the definition of custom mixed consistencies matching the exact
expected behavior of some given propagator. Additionally, SolverCheck is able
to perform dynamic checking and hence to explicitly test the correctness of the
state-restoration mechanisms involved in the targeted propagators.

The rest of our paper is organized as follows: Section 1 presents the back-
ground material necessary to understand the purpose and methodology applied
in SolverCheck. Then, Section 2 briefly presents other related lines of research
and how these relate to our work. After that, Section 3 introduces the various
capabilities of SolverCheck through a simple yet illustrative example. Finally,
Section 4 reports on the experiments that were made to validate the effective-
ness of SolverCheck before conclusions are drawn in Section 5.

1 Property-based testing

SolverCheck adopts the so-called property-based testing paradigm which tack-
les the weaknesses of the classical example-based testing methodology. All the
open-source solvers that we are aware of, in particular Gecode [42], Choco [38],
JaCop [26], Or-tools [35], OscaR [36], and MiniCP [32], maintain a test suite to
test the solver at the granularity of the constraints. The test suites of most of
the solvers1 follow the classical example-based approach.

As the name suggests, example-based testing relies on a tester to describe
concrete situations (example, with actual variables and domain instantiation)
supposedly representative of a class of errors. By combining many such exam-
ples, the tester creates a broad test suite covering a large number of poten-
tial problems. However, we point out two weaknesses of this approach. First,
example-based unit tests are expensive to write and to maintain. Manually find-
ing interesting instances to test is no easy task. It requires some expertise and
intuition. Also, test code is often treated as a second class citizen: the quality
standards applied to that fraction of the code are less stringent than for the rest
of the code base. Therefore, it results that the code composing the test suites
is often crippled with duplicate fragments. Moreover, the hard-coded instances
fail to clearly communicate the intent regarding which important property is
being tested with a given example. For instance, the objective of testing a global
constraint’s consistency level does not shine from any given test example. Add
1 Gecode, and likewise Choco for some of its propagators, are a notable exception
which is covered in the related work section.
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to that picture the fact that example-based tests often opt for an all imperative
coding style, and the original goal of the test becomes difficult to grasp. Mean-
while, example-based testing does not offer any means to improve on that floor
or to test that kind of property in a generic way.

Property-based testing (PBT) addresses those weaknesses by a combination
of fuzzing [41] and formal specification. Doing so, PBT changes the role of the
test engineer. With PBT the test engineer must express the general properties
that must hold for all executions of a given software rather than manually craft-
ing lots of test cases (example-based testing). These properties are expressed
in a high-level declarative language which abstracts away the details of actual
test cases. As the name suggests, this method is test-based. Hence, it is inher-
ently incomplete. Nevertheless, moving the burden of actual test case generation
from the human tester to an automated tool makes PBT a remarkably effective
approach to identifying bugs in practice.

2 Related work

The purpose of our research differs from the line of work started in the late
‘80s [15,19,14,31,27]. Indeed, that rich body of investigations aimed at verifying
whether the CP program (today, one would rather talk about CP model instead)
was correct. SolverCheck, on the other hand, aims at testing the implementation
of a CP solver, which is a different concern by large. It also differs from the
research embodied in FocalTest [11] which uses CP to define smart generators
for PBT. Instead, SolverCheck provides a PBT library to assess the correctness
and robustness of CP solvers.

Even though the properties to be tested are formally specified, SolverCheck is
a testing library, not a formal verification tool. That distinction typically makes it
simpler to use. Indeed, despite the many advances in the domain, proof-checkers
for general purpose languages either require some human guidance, do not sup-
port all language constructs [1,4], or are currently unable to deal with programs
as large and complex as modern CP-solvers [21,20,25]. Similarly, as of today,
formally certified CP solvers [18,12] are nowhere close to the state of refinement
and efficiency of state-of-the-art solvers. For instance, these rely on (efficient
but suboptimal) OCaml code extracted from Coq [43] and only support con-
straints of arity greater than 3 through a decomposition into equivalent binary
constraints (using the hidden variable encoding) [17].

Recently, the SAT/SMT/ASP/QBF communities have undertaken a line of
work that closely relates to ours [9,8,3,34]. Just like SolverCheck, these tech-
niques also apply fuzzing in order to ensure the quality of the tools they develop.
However, that body of work ignores the specifics of a CP solver. In particular,
they disregard consistency related issues (mixed or not). Meanwhile, as explained
earlier, this is one of the essential aspects of the reasoning and development of
a CP solver.

As it has already been mentioned, Gecode [42] and Choco [38] adopt an
original test strategy which allows them to test the consistency (DC, BC(D))
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imposed by some of their propagators2. Their approach, albeit elegant and ef-
ficient, is unable to deal with mixed consistencies (eg. that of the element [23]
constraint).

Last year, Akgün et al. proposed at the CP conference an interesting ap-
proach based on metamorphic testing [2] to test the implementation of a solver.
Their goal, as well as their initial intuition is the same as those behind Sol-
verCheck. Both target the testing of propagators implemented in actual CP
solvers, and both rely on having two distinct implementations of each filter.
However, their approach relies on the table propagator from the target solver
while SolverCheck automatically derives a naive alternative implementation of
the propagator which is completely independent from the target solver. This
allows SolverCheck to set the focus on a rich set of consistencies (among which,
mixed consistencies), when [2] supports only GAC.

3 What SolverCheck has to offer

We will use the example reproduced in Listing 1.1 as a starting point. The latter
is actually an excerpt of the test suite we wrote when testing JaCoP.

Listing 1.1: Example: JaCoP LexOrder(ď) must enforce GAC.

1 @Test
2 public void statelessLexLE () {
3 assertThat(
4 forAll(listOf("x", jDom())).assertThat(x ->
5 forAll(listOf("y", jDom())).assertThat(y ->
6 a(statelessJacopLexOrder(false))
7 .isEquivalentTo(arcConsistent(lexLE(x.size(), y.size())))
8 .forThePartialAssignment(x, y)
9 )));

10 }

3.1 Declarative testing

The declarative aspect of the test code reproduced in Listing 1.1 is obvious. No
mention is ever made in the code about any concrete test case. Instead, that
code snippet uses a declarative style close to that of a domain-specific language
to express a property, a specification of what the code should do. The details
of the actual tests that are used to validate the implementation are left to the
system. Assuming a basic knowledge of Java, it is clear from Listing 1.1 that any
reader – familiar with SolverCheck or not – will grasp the expressed property.
In our example, it states that for any two given lists x and y of variables, the
filtering of the domains imposed by the actual LexOrder constraint from JaCoP
should strictly enforce domain consistency.

2 Actually, both solvers adopt a slightly different approach, but this is not relevant
for our matter as they are based on the same idea. For the full details, see http:
//bit.ly/cst-gecode and http://bit.ly/cst-choco.

http://bit.ly/cst-gecode
http://bit.ly/cst-gecode
http://bit.ly/cst-choco
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Naturally, such a short code snippet is not fully self-contained, and the test
engineer is expected to write a little bit of glue code – which we call an adapter.
The sole purpose of that adapter is to ensure the interoperability of SolverCheck
and the targeted solver. Concretely, implementing such an adapter amounts to
writing a few functions performing the conversion between the types of Solver-
Check and those of the target solver. These functions are typically very simple,
and the effort to write them is only required once per solver. The adapter is
written once and reused for all constraints and properties.

3.2 Consistency

Despite its apparent simplicity, the example from Listing 1.1 is a good illustration
of the flexibility provided by SolverCheck. It shows how to parameterize the con-
sistency level used to test a given propagator. It would only take a change of line 8
in the example to modify the property expressed in Listing 1.1 and let it state
that the propagator should enforce BC(Z) rather than DC. For that purpose,
the only change required would be to replace arcConsistent(lexLE(x.size(),
y.size()))) by boundZConsistent(lexLE(x.size(), y.size()))).

Because solver developers tend to be pragmatic people who favor general case
efficiency over the compliance to pure mathematical consistency definitions, it
is often the case that discrepancies exist between the implemented artifacts and
the theoretical framework. To cope with that reality, SolverCheck offers facil-
ities to express that a filtering should be stronger than (isStrongerThan(¨)),
weaker than (isWeakerThan(¨)) or equivalent to (isEquivalentTo(¨)) a given
consistency level. This is illustrated by line 7 in our illustrating example. How-
ever, a relative positioning wrt a "standard" consistency level might be deemed
too weak. This is why SolverCheck also supports the definition of custom mixed
consistencies. The example of Listing 1.2 illustrates how the exact mixed con-
sistency of a propagator is specified with SolverCheck (line 8). That example
shows that for any array A of integer and pair of variables x and y, MiniCP’s
elementpA, x, yq ” Arxs “ y constraint does not comply with any of the stan-
dard consistencies. Instead, the property states that each value in the domain of
x should have a support in y whereas only the upper and lower bounds of Dpyq
should have a support in x.

Note that in addition to illustrating the expression of mixed consistency
filters, our example also shows how to impose a time limit on the checking of
properties (Line-3). This feature means that one can force a test to stop (with
an inconclusive result) when a given duration has elapsed. This is useful in CI
systems where builds are expected to complete (relatively) swiftly.

Listing 1.2: A[x] = y has a mixed consistency

1 @Test
2 public void elementIsHybridConsistent () {
3 given(TIMELIMIT , TimeUnit.SECONDS).assertThat(
4 forAll(listOf("A", integer ())).assertThat(A ->
5 forAll(domain("x")).assertThat(x ->
6 forAll(domain("y")).assertThat(y ->
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7 a(minicpElement1D(A))
8 .isEquivalentTo(hybrid(element(A), rangeDomain (), bcDDomain ()))
9 .forThePartialAssignment(x, y)

10 ))));
11 }

3.3 Extensibility

The example from Listing 1.3 illustrates how SolverCheck’s capabilities can be
extended to support constraints that were not initially foreseen3. To that end,
it suffices to implement a new Checker for the desired constraint. That is a
predicate on assignment which is true iff the assignment belongs to the constraint
relation.

On top of the assertions meant to test the strength of a propagator, Solver-
Check provides several extension points making it possible to check virtually any
property of the tested filter. For instance, in the snippet a(tested).is(property),
the method is(¨) will accept any predicate on partial assignments for its prop-
erty argument. In particular, this is how the checks isContracting(), isIdempotent()
and isWeaklyMonotonic() have been implemented in the library.

Listing 1.3: Extending SolverCheck to support new constraints

1 public Checker lexLE(int x_sz , int y_sz) {
2 return assignment -> {
3 var xs = assignment.subList(0, x_sz);
4 var ys = assignment.subList(x_sz , x_sz+y_sz);
5 for (int i=0; i < min(x_sz , y_sz); i++) {
6 if (xs.get(i) < ys.get(i)) return true;
7 if (xs.get(i) > ys.get(i)) return false;
8 }
9 return x_sz <= y_sz;

10 };
11 }

3.4 Dynamic checking

Because there are many cases where existing solvers implement the filtering
of their constraints as incremental propagators, it is necessary to ensure that
their behavior is correct at any time during a search. In particular, one needs
to make sure that the stated properties remain satisfied even after many state
restorations. This is why SolverCheck offers a dynamic checking mode in addition
to the static checks that have been presented up to now. The definition of such
dynamic checks for properties is SolverCheck’s way to testing that both the
propagators and the state restoration mechanisms of the solver are correct.

As in the static case, whenever SolverCheck performs a dynamic check for
some given property, it starts by generating a pseudo-random input. However,
in the dynamic case, that random input is seen as the root of search tree and
3 SolverCheck comes with built-in checkers for the usual constraints alldiff,
element, gcc, etc.
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a series of dives is performed in order to explore a fraction of it. At each node
of the search tree, the system verifies whether the checked property still holds.
Should it not be the case, then SolverCheck would report a trace leading to a
state where the property is violated. When SolverCheck encounters a leaf, it
decides to roll back the search until an arbitrary node (chosen on the latest
visited branch) before starting a new dive.

In practice, using the dynamic checking mode requires slightly more work
from the human tester. Indeed, rather than writing a plain stateless adapter as
discussed in Section 3.1, the test engineer must write an adapter matching the
StatefulFilter interface (Listing 1.4) to let SolverCheck know how the search
is to be driven. Fortunately, this typically amounts to very little effort and needs
only be written once for all properties. Once that is done, it is sufficient to
use the stateful keyword to square the expected filtering declaration in order
to let SolverCheck validate the property with dynamic checks. Concretely, in
our example, it would suffice to adapt line 8 of Listing 1.1 to make it look like
stateful(arConsistent(. . . )).

Listing 1.4: Interface of a Stateful Filter in SolverCheck

1 public interface StatefulFilter {
2 void setup(PartialAssignment initialDomains);
3 void pushState ();
4 void popState ();
5 void branchOn(int variable , Operator op, int value);
6 PartialAssignment currentState ();
7 }

4 Evaluation

We conducted a series of experiments, all of which are based on three solvers4:
Choco [38], JaCoP [26] and MiniCP [32]. These solvers have been chosen because,
on the one hand, they run on the JVM which is our target platform; and on
the other hand, because they have been carefully developed by domain experts.
Among the large panel of possible constraints, we picked seven that were deemed
representatives of the kind of constraints typically available in a CP solver.

We observed five different kind of outcomes during this experiment and sum-
marize our findings in Table 1. The first possibility occurs when SolverCheck
wasn’t able to detect any mismatch between the tested propagators and their
documented behavior (Ëin Table 1). An other possible result is observed when
a propagator prunes more values than announced but never removes any solu-
tion (û). The defective cases are split in three categories: the cases where a
propagator was weaker than announced (ø), the cases where it provided an in-
correct answer (é) and those when an undesired behavior happened at runtime

4 Experiments were also realized using AbsCon [28]. However, even though we high-
lighted some defects in this solver, we chose not to report on the outcome of these
experiments because we are still discussing some of our findings with the maintainer
of that solver.
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(�). Among others, this covers program crashes (cast errors, memory exhaustion,
. . . ) and infinite loops. All of our findings have been reported to, and accepted
by the solvers maintainers. As of today, the vast majority of the findings we
reported have been fixed.

As shown per Table 1, SolverCheck was remarkably efficient at identifying
discrepancies between the actual and the documented behavior of implemented
propagators. And that, even though all these propagators had already been
carefully tested by their authors. In that sense, this experiment outdid our ex-
pectations wrt static issues detection. As a consequence, the dynamic checking
potential of our library remained unknown. Therefore, we conducted a variation
of our experiment where we manually introduced bugs in the state management
of the stateful constraints. Then we used dynamic checking to test the proper-
ties of the targeted constraints. For all the seeded bugs, SolverCheck correctly
reported a trace where the bug expressed itself.

Table 1: Findings of the exploratory testing phase
Solver Alldiff Element Table Sum GCC Lex Regular

Choco øé ø �ø øé Ë � Ë
JaCoP Ë û é Ë Ë ø �
MiniCP � Ë øé �é N/A N/A N/A

It is interesting to note that all the test cases that revealed “problems” were
small and intelligible to a human being. Not all of them were trivial though,
as some highlighted subtle corner cases that were not initially foreseen by the
programmers.

5 Conclusions and future work

In this paper we introduced SolverCheck, an open-source property-based testing
library to effectively check the correctness of the propagators of any JVM-based
solver. We showed how the library can be used to declaratively specify the prop-
erties which must hold for a constraint, and presented the two modes in which
the tests can be operated.

Furthermore, we demonstrated the practical effectiveness of SolverCheck
through an experimental study based on Choco, JaCoP and MiniCP. These re-
sults are promising as they show that our library has been able to identify bugs
in the aforementioned solvers despite their being heavily tested. This shows that
SolverCheck is successful at its intended purpose. On that basis, we are confident
that SolverCheck can and should be an integral part of the quality assurance
process of any JVM-based solver.

We envision several extensions of this work in the future. We believe that our
library can be adapted and extended to cope with the specifics of scheduling con-
straints. For instance, it could be extended to generate trusted filters matching
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the filtering of an edge-finding propagator [10,29,44]. Also, it could be extended
to target different classes of bugs. For instance, we think that it would be in-
teresting to leverage the features of SolverCheck to target aliasing issues which
are also a common source of bugs in solvers supporting views. Beyond that, our
library could benefit from the use of checkers that operate directly on partial
assignments. With these, a trusted filter would not necessarily need to always
test all assignments. Other possible extensions include microbenchmarking and
the ability to test solvers outside of the JVM world through language-agnostic
tests using MiniZinc [33] or XCSP3 [7].
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