
Constraint Programming-based Job Dispatching
for Modern HPC Applications

Cristian Galleguillos1,2, Ricardo Soto1, Zeynep Kiziltan2, Alina Ŝırbu3, and
Ozalp Babaoglu2

1 Pontificia Universidad Catlica de Valparaso, Chile
2 University of Bologna, Italy

3 University of Pisa, Italy

Abstract. HPC systems are increasingly being used for big data an-
alytics and predictive model building that employ many short jobs. In
these application scenarios, HPC job dispatchers need to process large
numbers of short jobs quickly and make decisions on-line while ensur-
ing high Quality-of-Service (QoS) levels and meet demanding response
times to generate dispatching decisions. Constraint Programming (CP)
has been shown to be an effective approach for tackling job dispatching
problems. State-of-the-art CP-based job dispatchers are unable to sat-
isfy the challenges of on-line dispatching and they are unable to take
advantage of job duration predictions. Both of these limitations jeopar-
dize achieving high QoS levels, and consequently impede the adoption of
CP-based dispatchers in HPC systems. In this paper, we propose a class
of CP-based dispatchers that are more suitable for HPC systems running
modern applications. The dispatchers we propose are able to reduce the
time required for generating on-line dispatching decisions significantly,
and are able to make effective use of job duration predictions to decrease
waiting times and job slowdowns, especially for workloads dominated by
short jobs.

1 Introduction

Easy access to massive data sets, data analytics tools and High-Performance
Computing (HPC) have been fueling the trend towards data-driven compu-
tational scientific discovery [2], with big-data processing frameworks such as
Hadoop and Spark increasingly integrated with HPC systems [1,25,22,15]. This
modern computing has been powered by continuous and significant technology
advances and achieved through innovations in computer architecture, program-
ming models, and needs of end-user goals that could only be addressed by com-
putational means.

An HPC system is a complex set of technologies which involves multiple dis-
ciplines of the Information and Communications Technology domain, such as
hardware, software, infraestructure, communications, to take advantage of the
computing hardware through the correct use of the available software large ap-
plications are executed in parallel in order to reduce their runtime and to process

2 Galleguillos et al.

workloads as fast as possible. According to TOP500 4, in 2020 is expected to
reach the exascale computing (1018 float operations per second), such capacity
represents a thousandfold increase over the current HPC systems. The current
top #1 HPC system reaches a peak performance of ≈150 teraFLOPS (1015)
under the High Performance Linpack benchmark. The peak performance is cal-
culated considering all of its computing units being used, i.e. 2,414,592 CPU
cores. Therefore, such performance may be reached if the system is highly busy.

On a typical usage of HPC systems, users submit jobs which are self-contained
scripts with several information such as resource request, walltime, command to
execute, etc. to run without supervision. As the demand for HPC technology
continues to grow, a typical HPC system receives a large number of jobs by its
end users. However the maximum peak performance may not be reached even if
the system is busy and with a high queue to process. This is due to starvation,
which is caused by its management software due to an incorrect load balancing.
This calls for the efficient management of the submitted workload and system
resources. This critical task is carried out by the Workload Management System
(WMS) software component, specially by its dispatcher which has the key role
of deciding when and on which resources to execute the individual jobs.

Workloads of HPC systems engaged in data-driven analytics tend to be a mix
of many short jobs that run for less than one hour, together with fewer longer
jobs [23]. Hence, HPC job dispatchers need to rapidly process a large number
of short jobs in making on-line decisions so as to improve the Quality-of-Service
(QoS) which is particularly important when HPC systems are used to provide
real-time services, such as big-data visualization [24,29,21], where response times
are critical for acceptable user experience. As to improve response times the
minimization of the waiting times is a typical metric to improve. However, this
metric affects differently depending of the job size class. Waiting time gives
greater emphasis on long jobs, as opposed to short jobs, which are much more
common. The normalization of the waiting time is a solution to this problem,
and is called slowdown which is the ratio between the actual job duration plus
its waiting time and the actual job duration.

Our study consider an on-line analysis of workloads, assuming all jobs arrive
over a period of time, then dispatchers must handle jobs in “real time” without
knowing about future job arrivals. While the on-line job dispatching problem
in HPC systems is NP-hard [5], it can be formulated as a job scheduling and
resource allocation problem for which Constraint Programming (CP) has pro-
duced good results [3]. Indeed, two dispatchers has been proposed [4,7,6] showing
good results on restricted test cases.

Despite the potential of these state-of-the-art CP-based job dispatchers, cer-
tain limitations hinder their adoption for modern HPC systems. As reported
in [8], the first dispatcher is not resilient to heavy workloads, which are present in
real scenarios, these are workloads where resource requests greatly exceed avail-
able resources. The time spent by this dispatcher in generating a dispatching
decision increases dramatically as more jobs requiring high system utilization

4 TOP500 Supercomputer sites https://www.top500.org/

CP-based Job Dispatching for Modern HPC Applications 3

arrive to the system. The second CP-based HPC dispatcher was initially em-
ployed in off-line mode [7], and later also in on-line mode [6] but on workloads of
maximum 1000 jobs submitted in a time window of half an hour. A more realistic
scenario where jobs arrive continuously and many of them end up waiting in a
queue due to unavailable computational resources increases greatly the difficulty
of generating dispatching decisions. These dispatchers were tested under differ-
ent conditions, each one using different routines as to simulate specific workloads
on specific system configurations with specific job attributes. However, to eval-
uate dispatchers the simulation of an HPC system is essential, and the current
available HPC simulators do not allow to carry out experiments across differ-
ent workload sources, resource types, and dispatching algorithms; neither are
scalable to large workload datasets nor provides support for easy customization,
such as Alea [19] and BatSim [12] simulators. This makes it difficult for users
to develop novel advanced dispatchers by exploiting information regarding the
current system status. Another limitation is related to the actual runtime dura-
tion of a job on a specific HPC system which is not known before it is executed
and yet is crucial for generating dispatching decisions to guarantee high QoS
levels. Dispatchers often use the expected job duration for this purpose, which
is the maximum time a job is allowed to execute on the system. In the above
mentioned dispatchers, the expected duration is the default value assigned by
the system, which is typically the default wall-time of the queue where the job is
submitted, unless the job owner supplied her own expected duration. Even in the
latter case, however, users tend to use the maximum wall-time and user estima-
tions are acknowledged to be overestimated in general [14,11,20]. A dispatcher
that relies on overestimated durations is likely to schedule fewer jobs than possi-
ble at dispatching time, and consequently, is likely to cause unnecessary delays.
Prediction of actual runtime durations using simple heuristics or more sophis-
ticated machine learning techniques is an active area of research [28,18,16,13].
Recent studies show that the use of job duration predictions when generating
dispatching decisions can substantially improve QoS levels in backfilling-based
dispatchers [27,18,13,16].

The main contributions of our work are (i) a Simulator capable to easily carry
out dispatching research and be able to conduct simulation on large datasets,
(ii) a job duration predictor to cope with inaccurate user predictions, (iii) a class
of novel CP-based dispatchers that are more suitable for HPC systems running
modern applications and employ job duration prediction to achieve higher QoS
levels.

2 HPC Systems

An HPC system provides a larger compute capability than is possible to achieve
in a personal computer. Its architecture is typically an aggregation of several
computers, each one of which can look pretty similar to a personal computer.
HPC systems are usually shared among many users, where each user has a
dedicated portion of the computers resources for a period of time to run her

4 Galleguillos et al.

jobs. A job encapsulates an application software which usually tries to solve a
problem and give answers to research questions. How fast a problem can be
solved depends on how complex is itself and how fast is the machine where the
application is executed.

A WMS is an important software of an HPC system, being the main access
for the users to exploit the available resources for computing. Examples for
WMS are PBS5and Slurm6. A WMS manages user requests and the system
resources through critical services. A user request consists of the execution of a
computational application over the system resources. Such a request is referred
to as job and the set of all jobs are known as workload. The jobs are tracked
by the WMS during all their states, i.e. from their submission time, to queuing,
running, and completion. Once a job is completed, the results are communicated
to the respective user.

A WMS offers distinct ways to users for job submission such as a GUI
and/or a command line interface. A job is a self-contained script, which includes
commands, arguments, input file paths, and the resource requirements; thus it
doesn’t require user intervention. A WMS periodically receives job submissions.
It may receive submissions all day long; however, most of the submissions are
received during working hours. Some jobs may have the same computational
application with different arguments and input files, referring to the different
running conditions of the application in development, debugging and produc-
tion environments. When a job is submitted, it is placed in a queue together
with the other pending jobs (if there are any). The time interval during which
a job remains in the queue is known as waiting time. The queued jobs compete
with each other to be executed on limited resources.

A job dispatcher decides which jobs waiting in the queue to run next (schedul-
ing) and on which resources to run them (allocation) by ensuring high system
utilization and performance. The dispatching decision is generated according to a
policy using the current system status, such as the queued jobs, the running jobs
and the availability of the resources. A suboptimal dispatching decision could
cause resource waste and/or exceptional delays in the queue, worsening the sys-
tem performance and the perception of its users. A (near-)optimal dispatching
decision is thus a critical aspect in a WMS.

3 Job Duration Prediction

Duration of jobs is an important consideration in dispatching decisions and
knowing them at job submission time clearly facilitates dispatching algorithms.
Such algorithms are often developed with the assumption that job durations are
known [30,10]. Even if this is not practical, in some cases it may be possible
to rely on user-provided estimates of job duration [30,7]. Many HPC systems
allow users to define a wall-time value, and use a default value when users fail to
provide one. This wall-time can be considered a crude prediction of job duration.

5 Altair PBS: https://www.pbsworks.com/
6 Slurm Workload Manager: https://slurm.schedmd.com/

https://www.pbsworks.com/
https://slurm.schedmd.com/

CP-based Job Dispatching for Modern HPC Applications 5

In general user estimations are not reliable [30], while predefined wall-times
are inflexible to account for all user needs. In these conditions, prediction of
job duration through other means may prove to be an important resource. We
propose a simple data-driven heuristic algorithm that relies on user histories
to predict job duration. The data-driven approach is particularly useful when
user data can be stored for longer periods of time, which is increasingly feasible
through modern Big Data tools and techniques.

Our heuristic [16] constructs job profiles from the available workload data.
The profile includes job name, queue name, user-declared wall-time, and the
number of resources of each type requested. Each user is analyzed separately.
Prediction is based on the observation that jobs with the same or similar profiles
have the same duration for long periods of time — there is a temporal locality of
job durations. Then, at some point, the duration changes to a new set of values,
which are again stable in time. Hence, for each new job, our heuristic searches
for the last job with a similar profile, and uses the duration of that job to predict
the duration of the new one.

We have also used machine learning to predict job duration. However, results
were not satisfactory, with our simple heuristic providing much better perfor-
mance. We believe this is due to the temporal locality observed in the data, and
also due to the fact that jobs with the same profile may have several different
durations depending on when they were submitted. This means that a regular
regression model would try to fit a wide range of values with the same features,
resulting in an averaging of the observed durations.

We remark a difficulty to carry out dispatching research, and specifically to
test this job duration prediction method, because we need to access to the actual
workload data — which is possible in a real environment, without any prepro-
cessing that could remove important information such as the name of jobs, to
make better predictions. We predict the job duration over all the workload from
the Eurora system 7. The exact under and overestimation rates are 3.6% and
96.3% for the user defined walltime, and 25.8% and 53.7% for our job duration
prediction, respectively. Our job duration prediction introduces a considerable
rate of underestimation, which is common in job duration predictions, despite
this, we improve the accuracy in the expected job duration, 50% of the jobs
are around ±25% of the actual duration, instead the user walltime is less than
10%. In [16], we tested the integration of our prediction with five state-of-the-
art dispatching algorithms, and concluding that using prediction is advantageous
and the main beneficiaries are the short jobs. Given the prominent presence of
short jobs in typical HPC system [26] workloads, this benefit should apply to
large-scale computational infrastructures in general.

4 HPC simulator

One of the challenges of job dispatching research is the intensive experimentation
necessary for evaluating and comparing various dispatchers in a controlled envi-

7 https://www.cineca.it/en/content/eurora

6 Galleguillos et al.

ronment. The experiments differ under a range of conditions with respect to the
workload, the number and the heterogeneity of resources, and the dispatching
algorithms. However, using a real HPC system for experiments is not realis-
tic. Therefore, simulating an HPC system is essential for conducting controlled
dispatching experiments. To do so, we developed AccaSim [17], a library for sim-
ulating the Workload Management System in an HPC system, which offers to
the researchers an accessible tool to facilitate their job dispatching research. The
library is open-source, implemented in Python, which is freely available for any
major operating system, and works with dependencies reachable in any distri-
bution. It is executable on a wide range of computers thanks to its lightweight
installation and light memory footprint. AccaSim is scalable to large workload
datasets and provides support for easy customization, allowing to carry out
experiments across different workload sources, resource types, and dispatching
algorithms. Moreover, AccaSim enables users to develop novel advanced dis-
patchers by exploiting information regarding the current system status, which
can be extended for including custom behaviors such as energy and power con-
sumption and failures of the resources. Last but not least, AccaSim aids users in
their experiments via automated tools to generate synthetic workload datasets,
to run the simulation experiments and to produce plots to evaluate dispatchers.
Researchers can thus use AccaSim to mimic a wide range of real systems, in-
cluding those possessing heterogeneous resources, develop advanced dispatchers
using for instance power and energy-aware, fault-resilient algorithms, and test
and evaluate them in a convenient way over a wide range of workload sources.

We compared AccaSim with other similar simulators [17]. From the results,
we obtained AccaSim uses up much less memory than the other simulators.
Indeed, 19 MB of memory in average was used by Accasim, where other simu-
lators, Batsim and Alea, average 6,421 MB when simulating the Metacentrum
2 workload dataset 8. In addition, AccaSim can process big workload datasets
without degrading its performance, whereas other simulators showed issues with
them. From the experimental study, the time to process the biggest dataset by
AccaSim took 383s, where Batsim and Alea average 1,158s, all of then using a
rejection policy. In general, we can say Accasim is scalable to large workload
datasets, and overall it performs much better than other similar simulators.

5 Constraint Programming-based Job Dispatchers

The on-line job dispatching problem in HPC systems takes place at a specific
time t for (a subset of) the queued jobs Q. A typical HPC system is composed
of N nodes, with each node n ∈ N having a capacity capn,r for each of its
resource type r ∈ R, giving the total amount of available resource. Each job
i ∈ Q has the arrival time qi ≤ t to the queue, which is unknown before the
arrival, and a demand reqi,r giving the amount of resources required from r.
The on-line dispatching problem at time t consists in scheduling each job i by

8 The MetaCentrum 2 log, which includes 5,731,100 jobs: https://www.cse.huji.ac.
il/labs/parallel/workload/l_metacentrum2/index.html

https://www.cse.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html
https://www.cse.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html

CP-based Job Dispatching for Modern HPC Applications 7

assigning it a start time si ≥ t, and allocating i to the requested resources during
its expected duration di, such that the capacity constraints are satisfied: at any
time in the schedule, the capacity capn,r of a resource r is not exceeded by the
total demand reqi,r of the jobs i allocated on it, taking into account the presence
of jobs already in execution. A typical objective is to minimize the sum of the
waiting times si − qi. Once the problem is solved, only the jobs with si = t are
dispatched. The remaining jobs with si > t are queued again with their original
qi. It is the workload management system software that decides the dispatching
time t and the subsequent dispatching times. In our experimental study, t belongs
to certain events, specifically, when a job is queued or is completed.

A solution to the problem (i.e., a dispatching decision) is obtained according
to a policy using the current system status, such as the queued jobs, the running
jobs and the availability of the resources. The goal is to dispatch in the best
possible way according a measure of QoS, such as by reducing the waiting times
or the slowdown of the jobs, which is directly perceived by the HPC users.

In [4,7], the first CP-based dispatchers for HPC systems are developed and
tested on a workload trace collected from the Eurora system [9]. In the first
dispatcher [4], the entire dispatching problem is modelled and solved using a
CP solver. The second dispatcher [7] instead relies on a hybrid method. While
the scheduling problem is modelled and solved in a CP solver, the allocation
problem is solved separately using a heuristic search algorithm. We will refer to
them as PCP and HCP, respectively, to mean the use of a Pure CP and a Hybrid
CP method in their dispatching algorithms. Both methods consider the objective
function which minimizes the sum of the waiting times of the jobs. PCP uses a
weighted sum so as to give priority to the jobs that stay in the queue longer than
their Estimated Waiting Time (EWT). The EWT value is the average waiting
time of the queue where a job is submitted, and is obtained by analyzing the
workload data. Instead in HCP, the weights are slightly different, giving priority
to the jobs of the queues with lower expected waiting times.

Our current contribution is redesign the main components of PCP and HCP.
First, we revisit their model and search control mechanism so as to make them
resilient to heavy workloads and applicable to on-line dispatching. To do so, we
consider only jobs which can be dispatched at the current time, with a maximum
number of jobs, remaining jobs are postponed. In addition, we add the solver
state to the search control. Consequently, if the solver proved unsatisfiability, the
dispatcher will avoid further restart until a new time point. PCP and HCP restarts
until a maximum time is reached. Second, we study the use of job duration
prediction, instead of the user expected duration, when generating dispatching
decisions. We incorporate the job duration prediction in a more active way in the
dispatcher by replacing the objective function, which uses a EWT based metric,
with the minimization of the job slowdowns. The EWT based metrics are not a
job specific feature that can be decided on-line at the time of dispatching. It is
a feature of the queue where the job is submitted and is calculated offline. Such
a value may not be informative on the current job submission status so as to
generate a dispatching decision of high quality. In addition, we involve the job

8 Galleguillos et al.

Dispatcher Total sim. time [s] Avg. waiting time [s] Avg. slowdown

PCP - - -
PCP’ + h. prediction 262,764 462 95
PCP’ + real duration 261,985 275 39

HCP 374,788 2,449 987
HCP’ + h. prediction 215,814 508 111
HCP’ + real duration 201,223 301 26

Table 1: Dispatcher results

duration prediction in the search of the scheduling and allocation, via the use of
job slowdown as job priority.

Table 1 demonstrate that with our redesign (PCP’ and HCP’) we significantly
reduce the time required to generate dispatching decisions; and the dispatchers
can benefit from good job duration predictions and considerably decrease the
waiting times and the slowdown of the jobs.We also used the real duration of
jobs as predictor, so as the accuracy increase the dispatching decision are better
with PCP and HCP. In general to benefit from this potential, job durations should
rely on predictions with acceptable levels of accuracy, going beyond the standard
user defined walltime. While the heuristic prediction considered is not the best,
we have shown that it is a valid alternative to the walltime, despite its simplicity.

6 Conclusions

So far, we have dealt with different aspects of dispatching research. First, we
developed an HPC simulator capable to mimic any real system, to develop, test
and evaluate advanced dispatchers. Second, we developed a data-driven approach
to predict job duration prediction showing a more effective predictions than the
user estimates. Results showed that short jobs are the main beneficiaries, and
given the features of the majority of workloads, this benefit should apply to large-
scale computational infrastructures in general. Last, we introduced new CP-
based dispatchers built on top of [4,7] and redesigning their main components.
We made them resilient to heavy workloads and applicable to on-line dispatching,
as well as adapted them to the use of job duration predictions to obtain high QoS
levels in terms of job waiting times and slowdown. Results show that the new
dispatchers compared to the original ones reduced the time spent in generating
decisions on a heavy workload. Moreover, the new dispatchers can benefit from
job duration predictions and generate decisions of higher QoS levels on workloads
dominated by short jobs. The new dispatchers are thus more suitable for HPC
systems running modern applications that employ short jobs.

We will finalize our work by including the allocation problem in the search of
the new PCP dispatcher, which currently focuses only on the scheduling problem.
We also plan to test the dispatchers with other, more sophisticated, duration
prediction methods, as well as to integrate dedicated allocation strategies in the
dispatchers so as to enhance system utilization.

CP-based Job Dispatching for Modern HPC Applications 9

References

1. Anderson, M.J., Smith, S., Sundaram, N., Capota, M., Zhao, Z., Dulloor, S., Satish,
N., Willke, T.L.: Bridging the gap between HPC and big data frameworks. PVLDB
10(8), 901–912 (2017)

2. Ashby, S., Beckman, P., Chen, J., Colella, P., Collins, B., Crawford, D., Dongarra,
J., Kothe, D., Lusk, R., Messina, P., et al.: The opportunities and challenges of
exascale computing–summary report of the advanced scientific computing advisory
committee (ASCAC) subcommittee. US Department of Energy Office of Science
pp. 1–77 (2010)

3. Baptiste, P., Laborie, P., Pape, C.L., Nuijten, W.: Chapter 22 - constraint-based
scheduling and planning. In: Handbook of Constraint Programming, Foundations
of Artificial Intelligence, vol. 2, pp. 761–799. Elsevier (2006)

4. Bartolini, A., Borghesi, A., Bridi, T., Lombardi, M., Milano, M.: Proactive work-
load dispatching on the EURORA supercomputer. In: Proc. of Principles and Prac-
tice of Constraint Programming - 20th International Conference, CP 2014. LNCS,
vol. 8656, pp. 765–780. Springer (2014)

5. Blazewicz, J., Lenstra, J.K., Kan, A.H.G.R.: Scheduling subject to resource con-
straints: classification and complexity. Discrete Applied Mathematics 5(1), 11–24
(1983)

6. Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Scheduling-based
power capping in high performance computing systems. Sustainable Computing:
Informatics and Systems 19, 1 – 13 (2018)

7. Borghesi, A., Collina, F., Lombardi, M., Milano, M., Benini, L.: Power capping in
high performance computing systems. In: Proc. of Principles and Practice of Con-
straint Programming - 21st International Conference, CP 2015. LNCS, vol. 9255,
pp. 524–540. Springer (2015)

8. Bridi, T., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: A constraint
programming scheduler for heterogeneous high-performance computing machines.
IEEE Transactions on Parallel and Distributed Systems 27(10), 2781–2794 (2016)

9. Cavazzoni, C.: EURORA: a European architecture toward exascale. In: Proc. of
Future HPC Systems - the Challenges of Power-Constrained Performance. pp. 1–4.
ACM (2012)

10. Chandio, A.A., Xu, C., Tziritas, N., Bilal, K., Khan, S.U.: A comparative study of
job scheduling strategies in large-scale parallel computational systems. In: Trust-
Com/ISPA/IUCC. pp. 949–957. IEEE Computer Society (2013)

11. Cirne, W., Berman, F.: A comprehensive model of the supercomputer workload.
In: Proc. of the Fourth Annual IEEE International Workshop on Workload Char-
acterization. pp. 140–148 (Dec 2001)

12. Dutot, P., Mercier, M., Poquet, M., Richard, O.: Batsim: A realistic language-
independent resources and jobs management systems simulator. In: JSSPP’16.
LNCS, vol. 10353, pp. 178–197. Springer (2016)

13. Fan, Y., Rich, P., Allcock, W.E., Papka, M.E., Lan, Z.: Trade-off between pre-
diction accuracy and underestimation rate in job runtime estimates. In: Proc. of
IEEE International Conference on Cluster Computing, CLUSTER 2017. pp. 530–
540. IEEE Computer Society (2017)

14. Feitelson, D.G., Weil, A.M.: Utilization and predictability in scheduling the IBM
SP2 with backfilling. In: Proc. of First Merged International Parallel Processing
Symposium and Symposium on Parallel and Distributed Processing, IPPS/SPDP
1998. pp. 542–546 (1998)

10 Galleguillos et al.

15. Fox, G.C., Qiu, J., Jha, S., Ekanayake, S., Kamburugamuve, S.: Big data, simula-
tions and HPC convergence. In: Proc. of 6th and 7th International Workshop Big
Data Benchmarking, WBDB 2015. LNCS, vol. 10044, pp. 3–17. Springer (2015)

16. Galleguillos, C., Ŝırbu, A., Kiziltan, Z., Babaoglu, Ö., Borghesi, A., Bridi, T.:
Data-driven job dispatching in HPC systems. In: Proc. of Machine Learning, Opti-
mization, and Big Data - Third International Conference, MOD 2017. LNCS, vol.
10710, pp. 449–461. Springer (2017)

17. Galleguillos, C., Kiziltan, Z., Netti, A., Soto, R.: AccaSim: a customizable work-
load management simulator for job dispatching research in HPC systems. Cluster
Computing pp. 1–16 (2018)

18. Gaussier, É., Glesser, D., Reis, V., Trystram, D.: Improving backfilling by using
machine learning to predict running times. In: Proc. of International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2015. pp.
1–10. ACM (2015)

19. Klusácek, D., Rudová, H.: Alea 2: job scheduling simulator. In: SimuTools. p. 61.
ICST/ACM (2010)

20. Lee, C.B., Schwartzman, Y., Hardy, J., Snavely, A.: Are user runtime estimates
inherently inaccurate? In: Proc. of 10th Workshop on Job Scheduling Strategies for
Parallel Processing, JSSPP 2004. LNCS, vol. 3277, pp. 253–263. Springer (2004)

21. Nonaka, J., Sakamoto, N., Shimizu, T., Fujita, M., Ono, K., Koyamada, K.: Dis-
tributed particle-based rendering framework for large data visualization on hpc
environments. In: 2017 International Conference on High Performance Computing
Simulation (HPCS). pp. 300–307 (2017)

22. Qiu, J., Jha, S., Luckow, A., Fox, G.C.: Towards HPC-ABDS: an initial high-
performance big data stack. Building Robust Big Data Ecosystem ISO/IEC JTC
1, 18–21 (2014)

23. Reuther, A., Byun, C., Arcand, W., Bestor, D., Bergeron, B., Hubbell, M., Jones,
M., Michaleas, P., Prout, A., Rosa, A., Kepner, J.: Scalable system scheduling for
HPC and big data. J. Parallel Distrib. Comput. 111, 76–92 (2018)

24. Rückemann, C.: Using parallel multicore and HPC systems for dynamical visual-
isation. In: 2009 International Conference on Advanced Geographic Information
Systems Web Services. pp. 13–18 (2009)

25. Singh, D., Reddy, C.K.: A survey on platforms for big data analytics. Journal of
big data 2(1), 8 (2015)

26. Ŝırbu, A., Babaoglu, Ö.: A holistic approach to log data analysis in high-
performance computing systems: The case of IBM blue gene/q. In: Euro-Par Work-
shops. Lecture Notes in Computer Science, vol. 9523, pp. 631–643. Springer (2015)

27. Tang, W., Desai, N., Buettner, D., Lan, Z.: Analyzing and adjusting user runtime
estimates to improve job scheduling on the Blue Gene/P. In: Proc. of 24th IEEE
International Symposium on Parallel and Distributed Processing, IPDPS 2010. pp.
1–11. IEEE (2010)

28. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated pre-
dictions rather than user runtime estimates. IEEE Transactions on Parallel and
Distributed Systems 18(6), 789–803 (2007)

29. Vivodtzev, F., Bertron, I.: Remote visualization of large scale fast dynamic simula-
tions in a HPC context. In: Proc. of 4th IEEE Symposium on Large Data Analysis
and Visualization, LDAV 2014. pp. 121–122. IEEE (2014)

30. Weil, A.M., Feitelson, D.G.: Utilization, predictability, workloads, and user runtime
estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel Distrib.
Syst. 12(6), 529–543 (2001)

	Constraint Programming-based Job Dispatching for Modern HPC Applications

