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Abstract. In many professions daily demand for different shifts varies
during the week. The rotating workforce scheduling problem deals with
the creation of repeating schedules for such demand and is therefore of
high practical relevance. This paper describes solving this real-life prob-
lem with several new practically relevant features. This includes early
recognition of certain infeasibility criteria, complex rest time constraints
regarding weekly rest time, and optimization goals to deal with optimal
assignments of free weekends. We introduce a state-of-the-art constraint
model and evaluate it with different extensions. The evaluation shows
that many real-life instances can be solved to optimality using a con-
straint solver. Our approach is under deployment in a state-of-the-art
commercial solver for rotating workforce scheduling. In order to analyse
strengths and weaknesses of different solution methods, we use Instance
Space Analysis to perform an in-depth evaluation on the problem.

Keywords: Constraint Programming, Workforce Scheduling, Instance
Space Analysis

1 Introduction

In many professions, different shifts are required to cover varying requirements
including areas like health care, protection services, transportation, manufactur-
ing or call centers. This problem may surface in many shapes, using different
demands and constraints.

In several applications it can be beneficial to obtain a rotating schedule where
each employee rotates through the same sequence of shifts and days off across
several weeks, however, at different offsets within the rotation. As the design
of shift schedules highly influences the work-life balance of the employees, such
problems are subject to a wide range of constraints, dealing not only with the
demand for employees in different shifts, but also legal and organizational con-
straints that determine allowed shift assignments.

Due to its importance, there has been ongoing research on the rotating work-
force scheduling (RWS) problem, and results have found their way into commer-
cial software like the Shift Plan Assistant (SPA) by XIMES GmbH.
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This paper presents contributions in two different areas regarding RWS from
two recent papers. First [11], we extend the problem in several different ways
based on the needs in real-life situations, including fast detection of infeasi-
ble instances, complex constraints to respect weekly rest times, as well as soft
constraints optimizing free weekends in the schedule, turning the satisfaction
problem into an optimization problem. To solve the problem we provide a new
constraint model and implement it in the constraint modelling language MiniZ-
inc. Second [12], we use instance space analysis on two different exact models
and a metaheuristic approach to show different strong and weak areas in the
instance space as well as a good coverage of the instance space when combining
the strengths of the algorithms.

2 Related Work

Due to high practical relevance various versions of employee scheduling problems
have been investigated for several decades. For an overview of existing literature,
refer to surveys like [4, 9, 3, 7].

The rotating workforce scheduling problem can be classified as a single-
activity tour scheduling problem with non-overlapping shifts and rotation con-
straints [1, 21] and is known to be NP-complete [6].

So far the problem has been addressed with a range of different methods.
Complete approaches include a network flow formulation [2], integer linear pro-
gramming [14], several constraint programming formulations [13, 19, 15, 26] and
an approach with satisfiability modulo theories [8]. There is also work on heuris-
tic approaches [17, 18], the creation of rotating schedules by hand [13], and using
algebraic methods [10].

The current state-of-the-art complete method for standard RWS was intro-
duced by [20]. It uses a solver independent formulation in the MiniZinc con-
straint language, either with a direct representation or using a regular automa-
ton, and applies both the lazy clause generation solver Chuffed and the MIP
solver Gurobi. It is the first complete method able to solve the standard bench-
mark set of 20 instances and introduces new benchmark instances that we also
use for comparison.

Existing work on RWS mostly deals with the standard version of the problem,
requiring any feasible solution, or delegates the selection of preferred solutions
to the user in an interactive process [19]. While standard RWS already has
practical relevance, the extensions allow to deal with more complex issues and
provide solutions that are of higher value in real-life applications.

Instance Space Analysis is a methodology developed by Smith-Miles and co-
workers [23, 24, 16] in recent years, by extending the Algorithm Selection Prob-
lem framework of Rice [22, 25]. Instances are represented as a feature vector that
captures the intrinsic difficulty of instances for various algorithms (or models or
parameter settings). By constructing a 2-d projection of a feature-vector repre-
sentation of instances, Instance Space Analysis (ISA) allows us to visualize the
distribution and diversity of existing benchmark instances, assess the adequacy
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of the features, identify and measure the algorithm’s regions of strength (foot-
print) and weaknesses, and distinguish areas of the space where it may be useful
to generate additional instances to support greater insights.

3 Problem Definition for Standard RWS

A rotating workforce schedule consists of the assignment of shifts or days off
to each day across several weeks for a certain number of employees. Table 1
shows an example for four employees (or four equal-sized groups of employees),
assigning the three shift types day shift (D), afternoon shift (A), and night shift
(N). Each employee starts their schedule in a different row, moving from row i
to row i mod n+ 1 (where n is the number of employees) in the following week.

Table 1. Example schedule for 4 employees

Empl. Mon Tue Wed Thu Fri Sat Sun

1 D D D D N N -
2 - - A A A A N
3 N N - - D D D
4 A A N N - - -

3.1 Problem Specification

We start by defining the basic version of the rotating workforce scheduling prob-
lem and recall definitions and notation by [19] and [20]. Extensions to the
formulation are introduced in the next section. We define:

– n: Number of employees.
– w: Length of the schedule, typically w = 7 as the demands repeat in a weekly

cycle. The total length of the planning period is n·w, as each employee rotates
through all n rows.

– A: Set of work shifts (activities), enumerated from 1 to m, where m is the
number of shifts. A day off is denoted by a special activity O with numerical
value 0 and we define A+ = A ∪ {O}.

– R: Temporal requirements matrix, an m×w-matrix where each element Ri,j

corresponds to the number of employees that need to be assigned shift i ∈ A
at day j. The number of employees oj that need to be assigned a day off on
day j can be calculated by oj = n−

∑m
i=1 Ri,j .

– `w and uw: Minimal and maximal length of blocks of consecutive work shifts.
– `s and us: Minimal and maximal lengths of blocks of consecutive assignments

of shift s given for each s ∈ A+.
– Forbidden sequences of shifts: Any sequences of shifts (like N D, a night

shift followed by a day shift) that are not allowed in the schedule. This is
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typically required due to legal or safety concerns. In practice it is usually
sufficient to forbid sequences of length 2 or sequences of length 3 where the
middle shift is a day off. These are also the kind of restrictions used in the
benchmark instances for rotating workforce scheduling.
In our model, we use a set F2

s ⊆ A for each s ∈ A to denote forbidden
sequences of length 2, such that x ∈ F2

s declares that shift x must not follow
shift s.
Forbidden sequences of length 3 are given as a set F3 of arrays of length 3
containing elements of A+. This definition could be extended to arbitrary
lengths ` using corresponding sets F`.

The task is to construct a cyclic schedule S, represented as an n×w-matrix,
where each Si,j ∈ A+ denotes the shift or day off that employee i is assigned
during day j in the first period of the cycle. The schedule for employee i through
the whole planning period consists of the cyclic sequence of all rows of S starting
with row i.

Instead of the matrix representation, the same schedule can also be repre-
sented as an array T which is equal to the schedule of the first employee, where
Ti denotes the shift assignment on day i with 1 ≤ i ≤ n · w. As the schedule is
cyclic, we could choose any day in the schedule to correspond to the first element
in T . We define the offset o with 0 ≤ o < w to denote the position of the first
element in T within the schedule, i.e., its day of the week. This representation
is beneficial for some of the following constraints.

3.2 Constraint Model

Our main model for standard RWS uses a direct representation of the constraints
based on [20]. Some aspects are modelled in a different way, most notably the
different way to deal with cyclicity using the offset o.

For any array or matrix the indices are modulo its dimension. Within this
description, such modulo operations are omitted for better readability. We define
N = {1, . . . , n}, W = {1, . . . , w} and NW = {1, . . . , n · w}.

The following equations model the demand.

n−1∑
i=0

(Td+w·i = s) = Rs,d+o ∀d ∈W, s ∈ A (1)

n−1∑
i=0

(Td+w·i = O) = n−
m∑
i=1

Ri,d+o ∀d ∈W (2)

Equation (1) models the demand for each day d and each shift type s. The
left side counts occurrences of s on day d, the right side uses the offset to access
the correct column of the demand matrix. Equation (2) is a redundant constraint
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that counts the number of day-off assignments for each day d. This is not neces-
sary to obtain a complete model of the problem, however, constraint satisfaction
solvers can benefit from such redundant definitions.

The next equations introduce symmetry breaking constraints which are also
used to make dealing with the cyclic nature of the problem easier in following
constraints.

T1 6= O (3)

Tn·w = O (4)

Equations (3) and (4) declare that the first element of T has to hold a working
shift, while the last element of T has to hold a day off. In principle any day of
the planning period could be used as the first day as it is cyclic. Taking into
account that every reasonable rotating workforce scheduling problem contains
at least one working day and at least one day off, we can set the first element of
T to align with the beginning of a working block.

This has two advantages. First, it eliminates several symmetric versions of the
same solution, reducing cyclic occurrences of the same solution from n·w possible
notations to the number of working blocks within the solution. Second, this
guarantees that blocks of the same shift type or working blocks (consecutive days
without day-off assignments) can never cycle across the end of T , eliminating
the need to deal with cyclicity in their definition.

Next, constraints for the lengths of shift blocks and working blocks are de-
fined. Note that according to [20] the regular constraint does not improve results
in combination with the solver Chuffed, which is why we stick with the direct
representation.

∀j ∈ {1, . . . , `s − 1} : Ti+j = s ∀s ∈ A+, i ∈ NW, Ti = s, Ti−1 6= s (5)

i + us > n · w ∨ ∃j ∈ {`s, . . . , us} : Ti+j 6= s

∀s ∈ A+, i ∈ NW, Ti = s, Ti−1 6= s (6)

∀j ∈ {1, . . . , `w − 1} : Ti+j 6= O ∀i ∈ NW, Ti 6= O, Ti−1 = O (7)

i + uw > n · w ∨ ∃j ∈ {`w, . . . , uw} : Ti+j = O

∀i ∈ NW, Ti 6= O, Ti−1 = O (8)

Equation (5) defines the minimum block length for all shift types including
day-off assignments. For all elements Ti containing shift s, where the block starts
at i (corresponding to Ti−1 6= s), the next elements of T until the minimum
length must also contain shift s. Equation (6) defines the maximum block length,
stating that no later than us elements after the block start a different shift type
has to occur. Additionally, if i is too close to the end of T , the block will end
anyway, giving rise to the inequality part.
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Equations (7) and (8) define the same constraints for working blocks, using
`w and uw as bounds and checking for any working shift ( 6= O) instead of a
specific shift type s.

Finally the forbidden sequences need to be modelled.

Ti 6= s ∨ Ti+1 6∈ F2
s ∀s ∈ A, i ∈ NW (9)

∃j ∈ {1, . . . , `} : Xj 6= Ti+j−1 ∀X ∈ F`, i ∈ NW (10)

Equation (9) models sequences of length 2, denoted by the set F2
s of shift

types not allowed to follow shift type s. Forbidden sequences of arbitrary length
` are modelled in (10), where for each possible match of each forbidden sequence
at least one element must differ from the forbidden sequence.

Further symmetry breaking constraints might be applied to determine the
offset o if certain conditions hold.

4 Problem Extensions

When using RWS in practical applications, the need for additional constraints
and optimization goals arises. Therefore, [11] introduces new extensions to RWS
in order to apply it to more real-life scenarios. This section summarizes the main
contributions.

4.1 Detecting Infeasible Instances

The standard benchmark data set consists of 20 instances derived from real life
scenarios, all of them admitting feasible solutions. However, the larger instance
data set by [20] also includes infeasible instances. The results show that the solver
Chuffed also used by us has difficulties identifying those instances. However, in
practice it is important to provide fast feedback to the user when they give
infeasible settings so that they can correct their input.

Two particular infeasibility tests are introduced. As these are defined on in-
put parameters only, several infeasible instances can be detected already while
compiling the instance for the solver, while there is still one consistent formula-
tion of the problem.

The first constraint is based on the fact that some combinations of weekly de-
mand profiles for individual shifts in combination with minimum and maximum
block lengths for this shift already lead to infeasibility.

Another observation is the fact that in a cyclic schedule the number of work
blocks and the number of free blocks is equal. On the other hand, both for
work blocks and free blocks a minimum and maximum number of blocks can be
calculated from the required number of shifts and the allowed block lengths. We
introduce two possibilities to use the block bounds for redundant constraints.
The first uses a global cardinality constraint (EXT1), the second possibility uses
counting arrays for the current number of blocks at each position in the array
(EXT2).
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4.2 Weekly Rest Time

While forbidden sequences of shifts can be used to handle minimum free time be-
tween consecutive shifts, work regulations often contain different, more complex
regulations for free time. Real-world scenarios often need to consider a weekly
rest time. Typically once a week a certain minimum amount of time has to be
free without interruption. Further, it might be possible to have exceptions once
every few weeks where the weekly rest time might be shorter according to certain
rules.

This can be included by maintaining the current amount of rest time at the
start of each shift and using this to enforce the required rest periods each week.

4.3 Optimizing Free Weekends

In the previous SPA implementation the user was presented a choice in sev-
eral stages of the algorithm, potentially selecting from a large number of fea-
sible solutions. However, defining properties of beneficial solutions beforehand
and including these definitions in the model allows to transform the satisfaction
problem into an optimization problem and to shift the selection process to the
solver.

Shift work can be very disruptive to the social life of employees, e.g., social
interactions with friends and family might be hard to schedule as free time is
arranged in various different patterns compared to employees with regular free
weekends.

Therefore, we chose to optimize the free time on weekends and provide dif-
ferent measurements of desirable weekend schedules. The first optimizes the
number of weekends where both Saturday and Sunday are free, optionally en-
forcing no night shift on Friday as well. Further options deal with minimizing
the maximum distance between free weekends or minimizing the sum of squared
distances between free weekends in order to incorporate a better distribution of
free weekends.

4.4 Results

We use the lazy clause generation solver Chuffed [5] as the solver for our models.
The results show EXT1 and EXT2, especially in combination, to be very efficient
in detecting infeasible instances in very little computational time. When adding
new real-life requirements in the form of complex weekly rest time constraints
we are still able to solve the majority of the benchmark instances in short com-
putational time. Introducing new objectives to optimize the scheduling of free
weekends, we show that for the majority of instances the optimum can be found
and proven in short computational time. Moreover, the output of intermediate
solutions allows the user to decide about the trade-off between runtime and
quality while running the solver.

In total this provides several improvements to the state-of-the-art modelling
of the problem that are currently being integrated as a core component of the
next iteration of the Shift Plan Assistant software.
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5 Instance Space Analysis

In order to explain what causes hardness in instances and which models work
best on which instances, we use Instance Space Analysis (ISA). For this we need
a diverse set of instances and features that are able to explain the problem
hardness.

In [12], we present a set of features aiming to describe the information re-
quired for algorithm selection and instance space analysis. We perform ISA using
the toolkit MATILDA, revealing gaps in the coverage of the range of real-life sce-
narios for a set of 2000 instances for the problem. Therefore, 4000 new instances
are created and extended analysis is performed on a more diverse selection of
instances.

Fig. 1. Algorithm results for the extended instance set. Feasible solutions in blue,
infeasible in green, timeout in yellow.

The results in Fig. 1 of the two extended models EXT1 (chuffed1) and EXT2

(chuffed2) on the extended instance set show different strong and weak areas in
the instance space as well as a transition from feasible to infeasible instances
including a more challenging area of instances at this transition. They also show
that combining both models gives fast results on the majority of instances as
their strong and weak areas complement well.

6 Conclusion

In this paper we presented work on the RWS problem, a real-world scheduling
problem, that is solved using constraint programming. We presented several ex-
tensions for the original problem that are included in our constraint programming
models and can improve results as well as incorporate more complex real-life
constraints. Further, we applied instance space analysis on the problem in order
to extend an existing instance set and investigate the performance of different
models and algorithms.
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19. Musliu, N., Gärtner, J., Slany, W.: Efficient generation of rotating workforce sched-
ules. Discrete Applied Mathematics 118(1-2), 85–98 (2002)

20. Musliu, N., Schutt, A., Stuckey, P.J.: Solver independent rotating workforce
scheduling. In: International Conference on the Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research. pp. 429–445. Springer
(2018)

21. Restrepo, M.I., Gendron, B., Rousseau, L.M.: Branch-and-price for personalized
multiactivity tour scheduling. INFORMS Journal on Computing 28(2), 334–350
(2016)

22. Rice, J.: The algorithm selection problem. In: Advances in Computers, vol. 15, pp.
65–118. Elsevier (1976). https://doi.org/10.1016/S0065-2458(08)60520-3

23. Smith-Miles, K., Baatar, D., Wreford, B., Lewis, R.: Towards objective measures
of algorithm performance across instance space. Comput. Oper. Res. 45, 12–24
(2014). https://doi.org/10.1016/j.cor.2013.11.015

24. Smith-Miles, K., Bowly, S.: Generating new test instances by evolv-
ing in instance space. Comput. Oper. Res. 63, 102–113 (2015).
https://doi.org/10.1016/j.cor.2015.04.022

25. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Computing Surveys (CSUR) 41(1), 6 (2009)

26. Triska, M., Musliu, N.: A constraint programming application for rotating work-
force scheduling. In: Developing Concepts in Applied Intelligence, Studies in Com-
putational Intelligence, vol. 363, pp. 83–88. Springer Berlin / Heidelberg (2011)


