
Constraint Programming Approaches to the
Discretizable Molecular Distance Geometry

Problem

Moira MacNeil and Merve Bodur

University of Toronto, Toronto, ON, Canada
m.macneil@mail.utoronto.ca, bodur@mie.utoronto.ca

Abstract. The Distance Geometry Problem (DGP) seeks to find posi-
tions for a set of points in geometric space when some distances between
pairs of these points are known. The so-called discretization assumptions
allow to discretize the search space of DGP instances. In this paper, we
study the Discretizable Molecular Distance Geometry Problem whose
feasible solutions provide a discretization scheme for the DGP. We pro-
pose three constraint programming formulations as well as a set of checks
for proving infeasibility, domain reduction techniques, symmetry break-
ing constraints and valid inequalities. Our computational results indicate
that our formulations outperform the state-of-the-art integer program-
ming formulations, both for feasible and infeasible instances.
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1 Introduction

In its essence, the Distance Geometry Problem (DGP) seeks to find positions for
a set of points in geometric space when some distances between pairs of these
points are known [6]. This has many applications, including in protein molecular
geometry, wireless sensor localization, graph drawing, and clock synchronization
[6]. The input to the DGP can be represented as a graph, say G, where the ver-
tices are the points we would like to position and weighted edges represent known
distances between two points. Here the DGP aims to find a realization function
mapping each vertex of G to a coordinate in a K-dimensional space such that
the distance between pairs of vertex coordinates is equal to the corresponding
edge weights in G. The so-called discretization assumptions reduce the search
space of the realization from a continuous space to a finite discrete one, which
makes the DGP considerably easier to solve. In this paper, we study a key class
of Discretizable DGPs, which ensure the discretization assumptions are met,
namely the Discretizable Molecular Distance Geometry Problem (DMDGP).

The rest of the paper is organized as follows. In Section 2, we present in
detail the DMDGP and review two existing IP formulations from the literature.
In Section 3, we introduce three novel CP models for DMDGP. We then present
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a series of enhancements which may aid in the solution of DMDGP, in Section
4. Finally, in Section 5, we present a computational study which compares the
CP and IP models, and demonstrates the utility of the enhancements.

2 Preliminaries

Notation. All sets are denoted calligraphically. Let G = (V, E) be an undirected
graph, where V is the set of vertices and E is the set of edges. Denote the
neighbourhood of a vertex v as N (v), where v /∈ N (v) and the degree of v as
d(v) = |N (v)|. We let G[V ′] = (V ′, E ′) be the induced subgraph of V ′ ⊆ V,
and E ′ = {{u, v} : u, v ∈ V ′, {u, v} ∈ E}. A clique, K, in G is a set of vertices
{v1, . . . , v|K|} ⊆ V such that {vi, vj} ∈ E ∀ vi, vj ∈ K such that vi 6= vj . Similarly,
a stable set, SS, is a set of vertices {u1, . . . , u|SS|} ⊆ V such that {ui, uj} /∈ E ∀
ui, uj ∈ SS with ui 6= uj .

Indices follow these conventions: indices start at 0, so that the possible posi-
tions of an order are [|V|]. We let |V| = n, and use |V| in relation to vertices and
n in relation to ranks. For indices we use the following notation: let a, b ∈ Z+,
a ≤ b, [a] = {0, 1, . . . , a− 1} and [a, b] = {a, a+ 1, . . . , b}.

2.1 Problem Definition

The Discretizable Molecular Distance Geometry Problem (DMDGP) [1] is the
search for a total order of the vertices of a simple, connected, undirected graph
G = (V, E), given an integer dimension K, that satisfies the following:

(i) the first K vertices in the order form a clique in the input graph G, and
(ii) for all vertices with rank ≥ K, each is adjacent to at least the K vertices

that immediately precede it in the order, that is together with its K adjacent
immediate predecessors it forms a (K + 1)-clique in the input graph.

Given an order (v0, v1, . . . , vn−1), for a vertex vi, we define its K immediate pre-
decessors in the order as {vi−K , vi−K+1, . . . , vi−1}. If an immediate predecessor
to vi is also adjacent to vi in G we call it an adjacent immediate predecessor. We
refer to a total order that satisfies (i) and (ii) as a DMDGP order, and the clique
satisfying (i) as the initial clique. We say an instance for which a DMDGP order
exists is feasible, otherwise it is infeasible. The problem of determining whether
a DMDGP order exists for G is known as the Contiguous Trilateration Ordering
Problem (CTOP) [1]. An instance of CTOP, i.e. an integer K > 0 and a simple,
undirected, connected graph G = (V, E), will be denoted (G = (V, E),K) or
simply (G,K). Cassioli et al. [1] proved CTOP is NP-complete.

Example 1 The graph given in Figure 1a with K = 2 is a feasible instance
for DMDGP. A possible DMDGP order is (v4, v2, v3, v1, v5, v0). Clearly, since
they are adjacent {v4, v2} form a clique, v3 is adjacent to both of its immediate
predecessors: v4, and v2, so {v4, v2, v3} form a (K+1)-clique in the input graph.
Similarly, v1 is adjacent to v2, and v3, forming a (K + 1)-clique in the input
graph and so on.
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Fig. 1: (a) A graph instance which is feasible for DMDGP with K = 2. (b)
Overlapping cliques of the order(v4, v2, v3, v1, v5, v0).

By definition of DMDGP and as seen in Example 1, minimally a DMDGP order
is a series of (K + 1)-cliques which overlap by at least K vertices [1], see Figure
1b.

2.2 Existing Integer Programming Models

Prior to this work, Cassioli et al. [1] present two integer programming (IP)
formulations for CTOP:

– The vertex-rank formulation (IPVR): They introduce |V|×n binary variables
indicating vertex-rank assignment. Then, the model contains (|V|+n)-many
1-1 assignment constraints and (|V| × n)-many clique constraints.

– The clique digraph formulation (IPCD): They enumerate all ordered cliques
of size (K+1) in G, define a clique digraph D with vertices as those ordered
cliques and arcs for pairs of cliques that suitably overlap to follow each other
in the order (as in Figure 1b). Then, the DMDPG solution corresponds to
a path in D. This IP model has digraph arc variables, first clique and last
clique variables, and precedence variables for vertices in G.

3 Constraint Programming Models

Constraint Programming (CP) is a natural approach to distance geometry or-
dering problems since we wish only to find a feasible solution and not prove
optimality. CP has been shown to work well for problems with a permutation
structure [4] and allows the leveraging of global constraints such as AllDiffer-
ent. To our knowledge, no CP model for CTOP has ever been proposed. The
flexibility of CP allows for three possible formulations for CTOP.

The first formulation follows naturally from the (IPVR) formulation. We define
integer variables rv equal to the rank of vertex v ∈ V.

(CPRANK) : AllDifferent(r0, r1, ..., r|V|−1) (1a)

|ru − rv| ≥ K + 1 ∀ u, v ∈ V s.t. u 6= v and {u, v} /∈ E (1b)

rv ∈ [n− 1] ∀ v ∈ V (1c)
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Using the global constraint AllDifferent [5] (1a), we enforce that each vertex has
a unique rank. Together with the domain constraints (1c), we obtain a one-to-
one vertex-rank assignment, since each rank has a possible domain of [n−1] and
we are enforcing the constraint over all the rank variables which are indexed by
the vertices, i.e., |V| = n variables. To enforce clique constraints (1b), we use
the idea that if two vertices do not have an edge between them, they cannot be
in the same (K + 1)-clique. In other words, their ranks must have a difference
of at least K + 1. This constraint completely models the clique constraints and
the predecessor constraints since if their rank difference is ≤ K then vertices
u, and v must be in the same clique which contradicts there being no edge
between them.

Secondly, we present what is called a dual formulation in CP [4], here the
values and variable meanings are swapped. We define integer variables vr equal
to the vertex in position r of the order, and note that the adjaceny matrix of G
is denoted by A, i.e., Av,u = 1 if and only if edge {u, v} ∈ E .

(CPVERTEX) : AllDifferent(v0, v1, .., vn−1) (2a)

Avi,vj = 1 ∀ i ∈ [0,K − 2], j ∈ [i+ 1,K − 1] (2b)

Avi,vj = 1 ∀ i ∈ [K,n− 1], j ∈ [i−K, i− 1] (2c)

vr ∈ [|V | − 1] ∀ r ∈ [n− 1] (2d)

In (2a) we enforce that each rank has a unique vertex, again using AllDifferent
[5]. To enforce the clique and predecessor constraints, we use the CP notion of
element constraints [3] we enforce that there is an initial clique in Constraints
(2b) and that all subsequent vertices have at least K adjacent immediate prede-
cessors in (2c) by ensuring edges exist between the appropriate vertices. Finally,
(2d) enforces the domain of the variables.

The last CP model is the result of combining the rank and vertex models
into a single model by channelling the variables using an inverse constraint. It
uses the constraints for predecessors and cliques from both formulations. This
is useful because redundant constraints may actually help CP solvers perform
more inference and discover feasible solutions in a shorter amount of time. Having
defined v and r variables as before, the combined model is as follows:

(CPCOMBINED) : |ru − rv| ≥ K + 1 ∀ u, v ∈ V s.t. u 6= v and {u, v} /∈ E (3a)

Avi,vj = 1 ∀ i ∈ [0,K − 2], j ∈ [i+ 1,K − 1] (3b)

Avi,vj = 1 ∀ i ∈ [K,n− 1], j ∈ [i−K, i− 1] (3c)

inverse(r, v) (3d)

rv ∈ [n− 1] ∀ v ∈ V (3e)

vr ∈ [|V | − 1] ∀ r ∈ [n− 1] (3f)

In this formulation, the inverse constraint (3d) enforces the relation (ru = j) ≡
(vj = u), which also makes the AllDifferent constraints in the vertex and rank
models redundant. The AllDifferent constraints may be included as redundant
constraints in the model, however initial computational results showed they were
detrimental thus are omitted hereafter.
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4 Enhancements

In this section we present a series of enhancements based on the structure of
DMDGP orders that can be used to improve the formulations presented in Sec-
tion 3. (For brevity, we omit the proofs and illustrative examples, which can
be found in our full paper [7].) We begin by discussing checks for infeasible
instances, followed by procedures for reducing the domains and breaking sym-
metries in DMDGP orders. Finally, we present a class of valid inequalities.

4.1 Infeasibility Checks

We begin the discussion of enhancements to DMDGP formulations by introduc-
ing some simple checks which will immediately indicate if an instance (G,K) is
infeasible. The first check arises from the fact that every vertex needs at least
K neighbours to be a part of a (K + 1)-clique.

Infeasibility Check 1 (Minimum Degree) Given (G, K), if ∃ v ∈ V such
that d(v) < K then G does not have a DMDGP order for K.

Similarly, it is possible to determine a lower bound on the number of edges
in G.

Infeasibility Check 2 (Minimum Edges) Given (G, K), if
|E| <

(
|V| − 1

2

)
K − 1

2K
2 then this instance is infeasible.

Next checks establish an upper and lower bound on the number of vertices
with small and large degree, respectively, where we call vertices v with d(v) < 2K
small degree vertices and vertices v with d(v) ≥ 2K large degree vertices. We
introduce the set Vd[K,K+δ] = {v ∈ V| d(v) ∈ [K,K + δ]} for a given δ ∈ Z+.

Infeasibility Check 3 (Upper Bound on Small Degree Vertices) Given
an instance (G, K), if ∃ δ ∈ [K − 1] such that

∣∣Vd[K,K+δ]
∣∣ > 2(δ + 1) + 1 then

this instance is infeasible.

Infeasibility Check 4 (Lower Bound on Large Degree Vertices) Given
(G, K), with n ≥ (2K + 1), if

∣∣Vd[2K,n−1]∣∣ ≤ n− (2K + 1) then the instance is
infeasible.

4.2 Domain Reduction

We are able to exploit some structural characteristics of CTOP to help prune
variable domains in the CP formulations. Let the domain of an integer variable
x be given by Dx.

First, we extend the lower bounds on the degree of a vertex given by Cassioli
et al. [1] to set the domains for rank variables. As observed previously, a DMDGP
order is a series of overlapping cliques of size (at least) K + 1. In the minimal
case, the first and last vertices in the order are in exactly one clique, the second



6 M. MacNeil and M. Bodur

and second to last vertices are in two cliques, and so on. The central (|V| − 2K)
vertices are in at least 2K cliques. From this we can infer the minimum number
of neighbours required by a vertex at a given rank.

Domain Reduction Rule 1 (Small Degree Vertices) Given an instance
(G, K), we can define the domain for the rank variables as follows:

Drv =

{
[d(v)−K] ∪ [n− 1− (d(v)−K), n− 1] if d(v) < 2K

[n− 1] otherwise

We are able to extend domain reduction to the vertices that are adjacent
to small degree vertices. The intuition is that if a vertex has small degree, the
position of its neighbours cannot be too far from that vertex. If the position of a
small degree vertex v∗ has already been limited, its neighbours must be within
the first or the last d(v∗) vertices of the order since they are all connected to v∗.

Domain Reduction Rule 2 (Neighbourhood of Small Degree Vertices)
Given an instance (G, K), with n ≥ (2K + 1), for all v∗ ∈ Vd[K,2K−1]

Drv = [d(v∗)] ∪ [n− 1− d(v∗), n− 1] ∀ v ∈ N (v∗).

4.3 Symmetry Breaking

As observed in [1], reversing a DMDGP order also gives a DMDGP order. We
establish that these are not the only symmetries present in DMDGP orders, and
present strategies for breaking these symmetries. We begin by a simple condition
to break the reverse symmetry. First, notice that if there is a single vertex that
has degree K without loss of generality we can fix its position to 0, if there is a
second vertex with degree K we can fix its position to n− 1, noting that there
are at most two vertices of degree K in a DMDGP order due to Infeasibility
Check 3.

Symmetry Breaking Condition 1 (Degree K) If Vd[K,K] = {vi}, then let
rvi = 0. If Vd[K,K] = {vi, vj}, then let rvi = 0 and rvj = n− 1.

Next, we observe that if two vertices have the same neighbourhood excluding
each other, they are interchangeable in the DMDGP order since they will have
exactly the same adjacent immediate predecessors. This guarantees a DMDGP
order, since if we interchange two vertices to ensure the order is preserved we need
only ensure those vertices have the appropriate adjacent immediate predecessors.
We call this symmetry pairwise symmetry, which can be broken by imposing an
arbitrary order on the pair of such symmetric vertices. Ideally, we would identify
a large set of such vertices and order them. However, identifying such vertex sets
can be computationally expensive. We instead identify two types of vertex sets
that will allow for easy detection and breaking of pairwise symmetry. Specifically,
we consider stable sets and cliques in the input graph.
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Symmetry Breaking Condition 2 (Stable Set) For a stable set
SS = {v1, v2, . . . , vk} ⊆ V such that N (vi) = N (vj) ∀ vi, vj ∈ SS we enforce
that rv1 < rv2 < · · · < rvk .

Symmetry Breaking Condition 3 (Clique) For a clique K = {v1, v2, . . . , vk}
⊆ V such that N (vi) \ K = N (vj) \ K, ∀ vi, vj ∈ K we enforce that rv1 < rv2 <
· · · < rvk .

In our experiments, we examine only cliques of size three or less, since we are
usually unable to find large cliques satisfying Condition 3. Furthermore, we are
able to conditionally extend these symmetry breaking conditions to include more
vertices. Consider, for example, two vertices v and u whose neighbourhoods differ
only by one vertex w ∈ N (v). If in the DMDGP order w is at least K + 1 away
from v, the edge connecting them is not necessary to enforce precedence in the
order, that is, w is not an adjacent immediate predecessor of v and vice versa. In
this case we can essentially consider u and v as having the same neighbourhood
and so can impose symmetry breaking on them. For some set S ⊆ V we denote
N (S) = ∪v∈SN (v) \ S, the set of all vertices, outside of S that are adjacent to
a vertex in S.

Symmetry Breaking Condition 4 (Extended Stable Set) Let SS be a sta-
ble set meeting Condition 2 or a single vertex not in any stable set meeting Con-
dition 2. For a vertex v ∈ V \ (SS ∪N (SS)) such that N (v) \N (SS) = {w} we
enforce the logical constraints:

|rv − rw| ≥ K + 1 =⇒ rv < ru ∀ u ∈ SS.

If we have already enforced an ordering for SS already, we need only add the
constraint

|rv − rw| ≥ K + 1 =⇒ rv < rv1 .

Symmetry Breaking Condition 5 (Extended Clique) Let K be a clique
meeting Condition 3 or a single vertex not in any clique meeting Condition
3. For a vertex v ∈ N (K) such that (N (v)∪{v})\ (N (K)∪K) = {w} we enforce
the logical constraints

|rv − rw| ≥ K + 1 =⇒ rv < ru ∀ u ∈ K.

Finally, if we have not been able to break any symmetry via any of the
previous ways we can arbitrarily choose two vertices and impose an order on
them.

Symmetry Breaking Condition 6 (Arbitrary) For any v1, v2 ∈ V enforce
that rv1 < rv2 .
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4.4 A Class of Valid Inequalities

Next, we develop some valid inequalities that can allow our models to perform
better in the case of infeasible instances. We proceed with the following intuition:
if we identify some subset S ⊆ V such that the induced subgraph of S does not
have a DMDGP order, the entire set S cannot appear consecutively in the order.

If for a given instance, (G,K), we are able to identify subsets S ⊆ V whose
induced graphs, G[S], do not have DMDGP orders for K, we can add cuts to
enforce that the difference between the maximum rank and the minimum rank
of any element in S is at least |S|. Let rmax, rmin denote the maximum rank and
the minimum rank of any vertex in S, respectively. The valid inequality is:

rmax − rmin ≥ |S| (4)

We can improve this cut by examining the vertex in S with the smallest
degree in the induced subgraph. Let δmissS (v) = |{u ∈ S \ {v} |(v, u) /∈ E [S]}|,
i.e., the number of edges with one endpoint at v ∈ S missing from G[S] and
let δmissS = maxv∈S δ

miss
S (v). If K > |S| − δmissS , the difference between the

maximum rank and the minimum rank must be greater than δmissS +K, because
the v ∈ S which has δmissS , cannot be in a clique with δmissS of the vertices in
S, so we need at minimum δmissS extra vertices between the vertices of S in the
order. Otherwise, if K ≤ |S| − δmissS , the difference in ranks must be greater
than |S| which is the inequality (4). So, the valid inequality is

rmax − rmin ≥ max{|S|, δmissS +K}. (5)

The task of finding subsets of vertices S so that the subgraph induced by S
does not have a DMDGP order is as difficult as determining if the whole graph
has a DMDGP order. Thus, we would like to find sets of vertices with the most
edges missing in their induced subgraph. As the sets with the most missing edges
are stable sets, we can consider stable sets in G as candidate S sets. For any
stable set SS, no pair of vertices can appear in the same (K + 1)-clique. Thus,
each pair of vertices in SS needs to have a difference in their ranks of at least
K + 1, meaning the minimum rank and maximum rank must have a difference
of (|SS| − 1)(K + 1). The inequality becomes

rmax − rmin ≥ (|SS| − 1)(K + 1). (6)

This observation also yields a simple check for infeasibility.

Infeasibility Check 5 Given (G,K), if the size of the maximum stable set in
G is greater than n

K+1 + 1, we can immediately say G does not have a DMDGP
order with K.

Finally, we define these valid inequalities so that they may be added to the
(CPRANK) and (CPCOMBINED) formulations. Given a stable set SS ⊆ V, and the
rank variables rv we have

max{rv|v ∈ SS} −min{rv|v ∈ SS} ≥ (|SS| − 1)(K + 1).
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5 Computational Results

Instances. We perform our numerical experiments on a test data set consisting
of randomly generated graphs with n ∈ {40, 45, . . . , 100} and the expected edge

density (measured as 2|E|
n(n−1) ) in {0.3, 0.5, 0.7}. The graphs are generated using

the dense gnm random graph() function in the NetworkX package [2]. We refer
to the instances with n ≤ 60 as the medium instances, and the rest as the large
instances.

Experimental Setup. The CPs and IPs are respectively solved using IBM
ILOG CP Optimizer and IBM ILOG CPLEX version 12.8.0. All models are
implemented in C++ and run on MacOs with 16GB RAM and a 2.3 GHz Intel
Core i5 processor, using a single thread. As the most frequently used value in
applications, K = 3 is used for all experiments. The time limit is set to 7200
seconds.

(a) Medium feasible instances (b) Medium infeasible instances

(c) Large feasible instances (d) Large infeasible instances

Fig. 2: Solution times of the models.

Results. We compare our CP formulations with the IP formulations of [1],
namely (IPVR) and (IPCD)1, that are briefly described in Section 2.2. We compare

1 Here, we only provide the results for the former.
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all formulations for medium instances and for large instances consider only the
best performing formulations as the others reached the time limit on almost
all cases. In Figure 2, we show the cumulative number of solved instances with
respect to time. Note that solution times are given in a logarithmic scale. We
also note that the enhancements are not included in these results and that the
complete numerical experiments can be found in [7].

We observe that CP formulations all outperform the IP, except for the
medium infeasible case where (IPVR) and (CPRANK) solve none of the instances.
Overall, (CPCOMBINED) performs the best, solving all the instances in the given
time limit, while (CPVERTEX) is the second-best model. Based on (CPCOMBINED)
results, we also observe that low density instances take significantly more time
to solve.

6 Conclusion

We propose the first CP formulations for the DMDGP and compare them against
two existing IP formulations in the literature. We also introduce three classes
of enhancements to help solve the DMDGP; namely infeasibility checks, domain
reduction, and symmetry breaking. Our computational results show our models
outperform the state-of-the-art IP formulations.We also provide the first class of
valid inequalities for DMDGP, whose efficient implementation remains as future
work.
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