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Abstract. This paper is a summary of the master thesis “Dual Hashing-
based Algorithms for Discrete Integration” realized by the first author at
the National University of Singapore. This thesis led to the publication of
an article of same title at the 25th International Conference on Principles
and Practice of Constraint Programming (CP2019).

Given a boolean formula F and a weight function ρ, the problem of dis-
crete integration seeks to compute the weight of F, defined as the sum
of the weights of satisfying assignments. Discrete integration is a funda-
mental problem in computer science with wide variety of applications
ranging from machine learning and statistics to physics and infrastruc-
ture reliability. Given the intractability of the problem, the approximate
variant has been subject to intense theoretical and practical investiga-
tions over the years. This thesis investigates development of algorithmic
approaches for approximate discrete integration. Discrete integration is
analyzed through the framework of general integration. Two algorithms
emerge from this framework: WISH, which was already discovered by Er-
mon et al [7], and a new algorithm: SWITCH. These algorithms both ap-
proximate the weight of F within a constant factor with high probability
and can be seen as dual to each other, in the sense that their complexities
differ only by a permutation of certain parameters. Indeed we show that,
for F defined over n variables, a weight function ρ that can be represented
using p bits, and a confidence parameter δ, there is a function f and an
NP oracle such that WISH makes O ( f (n, p, δ)) calls to NP oracle while
SWITCH makes O ( f (p, n, δ)) calls. We found f (n, p, δ) polynomial in n,
p and 1/δ, more specifically f (n, p, δ) = n log(p) log(n/δ).

1 Introduction

Given a boolean formula F and a weight function ρ that assigns a non-
negative weight to every assignment of values to variables, the problem of
discrete integration seeks to compute the weight of F, defined as the sum of
weights of its satisfying assignments. Discrete integration is a fundamental
problem in computer science. A wide variety of problems such as probabilis-
tic inference [12], partition function of graphical models, permanent of a ma-
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trix [15], reliability of a network [11] can be reduced to discrete integration.

In his seminal work, Valiant [15] established the complexity of discrete in-
tegration as #P-complete for all polynomially computable weight functions,
where #P is the complexity class comprised of counting problems whose de-
cision variant lies in NP. Given the computational intractability of discrete inte-
gration, approximate variants have been subject of intense theoretical and prac-
tical investigations over the past few decades.

Approaches to discrete integration can be classified into three categories:
variational techniques, sampling techniques, and hashing-based techniques. In-
spired from statistical physics, variational methods often scale to large instances
but do not provide guarantees on the computed estimates [16,14]. Sampling-
based techniques focus on approximation of the discrete integral via sampling
from the probability distribution induced by the boolean formula and the weight
function [9]. The estimation of rigorous bounds, however, require exponentially
many samples and therefore, practical implementations such as those based on
Markov Chain Monte Carlo methods [1] or randomized branching choices [8]
fail to provide rigorous estimates [6,10]. Recently, hashing-based techniques
have emerged as a promising alternative to variational and sampling tech-
niques to provide rigorous approximation guarantees [7,5,3]. The hashing-based
algorithm WISH seeks to utilize progress made in combinatorial solving over
the past two decades and to this end, the problem of discrete integration is re-
duced to linear number of optimization queries subject to randomly generated
parity constraints [7].

The primary contribution of the thesis has been to investigate the devel-
opment of algorithmic approaches for discrete integration. It sets a framework
from which were derived two different algorithms: WISH, which was already
discovered by Ermon et al [7], and a new algorithm: SWITCH. In particular,
WISH reduces the problem of discrete integration to optimization queries while
SWITCH proceeds via reduction to unweighted model counting. Both WISH
and SWITCH compute constant factor approximations with high probability
1− δ via usage of universal hash functions, a concept invented by Carter and
Wegman in their seminal work [2]. The thesis has been divided into three parts:
the study of discrete integration through the framework of general integra-
tion, the analysis of WISH and the analysis of SWITCH. This summary briefly
presents the findings and conclusions of each of these parts. After an introduc-
tion of the hypothesis that were made for this work in section 2, section 3 ex-
plains that discrete integration reduces through our framework to optimization
and counting subproblems. Section 4 presents WISH and SWITCH as hashing-
based algorithms solving the aforementioned subproblems to approximate a
discrete integral. In our work, we proved that both algorithms compute con-
stant factor approximations of the discrete integral with high probability. How-
ever we have shown that they have dual time complexities in the sense that,
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for F defined over n variables and a weight function ρ that can be represented
using p bits, there is a function f and an NP oracle such that WISH makes
O ( f (n, p, δ)) calls to NP oracle while SWITCH makes O ( f (p, n, δ)). We find
f (x, y, δ) polynomial in x, y and 1/δ, specifically f (n, p, δ) = n log(p) log(n/δ).

The duality obtained may not seem surprising in retrospect but such has not
been the case for the past five years. The prior work has often, without complete
evidence, asserted that the corresponding dual approach would be inferior both
theoretically and empirically [7,3]. The findings of this thesis, in turn, contra-
dicts such assertions and show that the two approaches indeed have compli-
mentary time complexity from theoretical perspective and empirical analysis
will be key in determining their usefulness. Since the work on development of
MaxSAT solvers that support XORs and SAT solvers that support XORs and
Pseudo-Boolean (PB) constraints is in its infancy; this work provides a strong
argument for the need and potential of both of these solvers as queries gener-
ated by WISH require MaxSAT solvers with the ability to handle XORs while
the queries by SWITCH requires SAT solvers that support XORs and PB con-
straints.

2 Context

Given a boolean formula F over n variables and a weight function ρ map-
ping each truth assignment to a non-negative weight, the problem of discrete
integration seeks to compute the weight of F, defined as the sum of weights of
its satisfying assignments, or witnesses, and denoted by ρ(F) = ∑σ|=F ρ(σ).

The thesis makes a few hypothesis on the weight function

– for all assignment σ ∈ {0, 1}n, the weight ρ(σ) is computable in polynomial
time

– for all assignment σ ∈ {0, 1}n, the weight ρ(σ) is written with p bits in
binary representation

– bounds on the minimum and maximum weights are known

Regarding the third hypothesis, the results of the thesis were obtained assum-
ing that all weights belong to [0, 1]. This makes sense in the context of proba-
bility inference, and the results obtained can easily be adapted to any arbitrary,
but fixed, upper bound on ρ.

3 A Framework for Discrete Integration

The development of algorithmic approaches for discrete integration led to
setting up a framework for discrete integration. Methods from this framework
follow a two-steps strategy:

1. reduce discrete integration to an integration problem for a real non-increasing
function
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2. apply a method to approximate the integral of a real function

In the first step, the function is required to be non-increasing so that constant
factor approximations can be ensured when estimating its integral.

Discrete integration is a problem of obvious discrete nature, however it can
be lifted into the continuous world using the tail function τ associated with the
weight distribution of witnesses of F. The tail is a function from R+ to N. For
some positive number u, τ(u) answers the question “how many witnesses of F
have weight heavier than u ?”. One can prove that τ is a non-increasing staircase
function, as illustrated in figure 1, and that its integral

∫
τ(u)du is exactly the

discrete integral ρ(F).
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Fig. 1: The tail function

There is a bijection between the set of tail values and the set of all distinct
weights of witnesses of F, so that the weight function (restricted to witnesses of
F) is also expressed as a function over the tails and then extended it to a func-
tion over R+, denoted here by w. Graphically one gets this function rotating the
graph of τ. It is then quite visual that the integral

∫
w(t)dt is another expression

for ρ(F).

The first step of the framework has been to find τ and w such that ρ(F) =∫
τ(u)du =

∫
w(t)dt. These integrals are intractable and are to be approxi-

mated, as stated in the second step of the framework. Given their staircase na-
ture, the only method fitted for approximated integration is the rectangles ap-
proximation: the integration axis is partitioned into polynomially many inter-
vals and the integral of the non-increasing function on each interval is bounded
between two rectangle areas. Choosing a partition such that for each interval,
the area of the upper rectangle is twice that of the lower rectangle, enables an
approximation of the integral within a factor 2. Following this idea, two esti-
mates approximating ρ(F) within a factor of 2 were designed:
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1. The first estimate W1 derives from the rectangles approximation of τ after
partitioning the weight axis at n + 1 splitting weights

W1 = q0 +
n

∑
i=1

qi2i−1

where the qi are the partitioning weights defined as the 2i quantiles of
the collection of weights of witnesses of F (i.e. qi is the maximum weight
such that there exists 2i assignment heavier than qi). We proved that W1 ≤
ρ(F) ≤ 2W1. Computation of W1 requires computation of all qi ; discrete
integration is then reduced to n + 1 “optimization” sub-problems.

2. The second estimate W2 derives from the rectangles approximation of w
after partitioning the tail axis at p + 1 splitting weights

W2 = τp2−p +
p−1

∑
i=0

τi2−(i+1)

where the τi are the partitioning tails defined as the tails at values 2−i (i.e.
τi is the number of witnesses of F of weight heavier than 2−i). We proved
that W2 ≤ ρ(F) ≤ 2W2. Computation of W2 requires computation of all τi ;
discrete integration is then reduced to p + 1 “counting” sub-problems.

The efforts invested in this framework for discrete integration lead to 2 esti-
mates of ρ(F). Through these estimates, discrete integration is reduced to poly-
nomially many optimization or counting sub-problems. Algorithms solving
these sub-problems would then be approximating ρ(F).

4 Hashing-based Algorithms for Approximate Discrete
Integration

Following the conclusions of the framework described in the previous sec-
tion, two algorithms were formulated: WISH, which was already discovered by
Ermon et al [7], and a new algorithm: SWITCH. WISH solves approximate vari-
ant of the optimization sub-problems previously defined, thus it approximates
W1. On the other hand SWITCH solves the approximate variant of the count-
ing sub-problems to approximate the second estimates W2. To these ends, both
implement hashing-based strategies. They rely on families of universal hashing
functions defined by Wegman and Carter in their seminal work, and on an NP-
oracle solving satisfiability queries for boolean formula with pseudo-boolean
constraint (PB constraints). The complexity of WISH and SWITCH is then ex-
pressed in terms of number of calls to NP oracle.

WISH deals with approximate variants of the optimization problems whose
solutions are necessary to computation of W1. These problems aim at finding
quantiles weights from the set of weights of witnesses of F. Hashing is used
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to reduce finding quantiles to standard optimization (i.e. finding a maximum
weight). The hash functions are built upon random parity constraints (XOR
constraints). The idea is to keep only witnesses of F satisfying i randomly sam-
pled XOR constraints, thus conserving in expectation #F/2i witnesses (where
#F denotes the number of witnesses of F). We prove that the maximum weight
of a witness surviving i random constraints is a good approximation of the
2i quantile weight qi. Based on this idea, WISH implements a strategy to find,
with high probability, high quality approximations of the quantile weights. Us-
ing these approximations in W1, it generates a 8-approximation of ρ(F) with
high probability. Several contributions to the original algorithm of Ermon and
al. were made. Optimization queries where reduced to NP oracle queries, a few
algorithmic improvements on the generation of random hash functions were
introduced, and, above all, the quality on the approximation of the discrete
integral has been greatly increased: the original analysis used pairwise inde-
pendence of the hash functions to prove a factor 256 approximation while we
exploited 3-wise independence to reach an 8-approximation.

The second algorithm, SWITCH, deals with approximate variants of the count-
ing problems to find the tails τi required to compute W2. The idea is to view tails
as cardinals of some subsets of witness of F and use hashing techniques to es-
timate these cardinalities. For a given subset of size τi, we successively apply
constraint. Each new randomly constraint halves the remaining subset in expec-
tation, so that the number of constraints necessary to reach the empty set can
be viewed as a good approximation of log(τi) and its power of 2 approaches τi.
Each time a constraint is applied, we check if the empty set has been reached
with one oracle query. Based on this idea, SWITCH implements a strategy to
find, with high probability, high quality approximations of the desired tails.
Using these approximations in W2, it generates a 8-approximation of ρ(F) with
high probability.

The work done in the thesis shows that WISH and SWITCH can be seen as
dual to each other, in the sense that their complexities differ only by a per-
mutation of the parameter. Specifically, for F a boolean formula on n variables
whose weights are written with p bits in binary representation (assuming usual
encoding), and a confidence parameter δ, there exists a function f such that
both WISH and SWITCH generates a 8-approximation of ρ(F) with probability
≥ 1− δ, and WISH makes O( f (n, p, δ)) calls to NP oracle against O( f (p, n, δ))
for SWITCH. We have found f to be polynomial in n, p and 1/δ, specifically
f (n, p, δ) = n log(p) log(n/δ). Furthermore, the analysis shows that the con-
stants hidden by the O notation are of same order of magnitude. So depending
on the value of n and p, one may prefer one algorithm to the other.
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