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Abstract. We present a new constraint programming model and a heuris-
tic approach for optimizing the charging operations of an electric taxi
fleet at Téo Taxi. The goal is to maximize the charge of the cabs dur-
ing high-demand periods. We use simulation to compare the solutions
provided by the constraint solver and the heuristic method.
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1 Introduction

The cab industry faces multiple optimization problems. For instance, minizing
the time to pick up a customers in order to maximizes the number of rides
accomplished during a work shift. Software can help to take the decisions that
provide a good dispatch. But the problem remains difficult as pickup addresses
are not known in advance. More recently, new optimization problems arrised
with electric cars. Indeed, electric cab companies such as Téo Taxi need to plan
their charging operations in order to get the cab fleet ready for rush hours. These
charging operations need to be integrated to the dispatch system. The operator
can either send a cab to pick up a customer or go charging to be ready for the
next rides.

The goal of this paper is to present a new optimization model for the charging
plan of the vehicles. The next section will describe the problematic in more
details. Then, we will review the literature about this problem. After, we will
present the policies we propose. We will show how we want to evaluate them and
what are the data we need. Finally, we will present future work and a conclusion.

2 Problem description

Téo Taxi owns a fleet of 100% electric cabs. The drivers of Téo Taxi are em-
ployees. They have fixed eight-hour schedules and a fixed salary. Unfortunately,
cabs do not have enough battery autonomy for an eight-hour shift. They need
to charge the vehicles once to six times per shift. At Téo Taxi, there is always
a cab plugged on a charging station. When the driver’s cab battery is low, the
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driver goes to a charging station and switches cabs. S/he plugs the cab with
a low battery and leaves with the cab with a recharged one. This is called a
permutation.

We aim to plan the charging operations of their fleet. The goal is to have
a model providing a schedule of permutations based on demand. Since the per-
mutations happen often, we need to do this affectation in between the cabs-
customer affectations. The objective of the schedule is to have a fleet of vehicles
with enough remaining battery capacity for the high demand period and to leave
sufficient time between two permutations to allow the batteries to fully recharge.

3 Literature review

The literature mostly covers the problem of assigning cabs to customers. When a
customer asks for a vehicle, one needs to choose which cab in the fleet is going to
be assigned to the customer. Each driver wants to maximize his/her own profit.
The profit of a driver is the gain for a ride minus the expenses. For example, a
long ride is more lucrative than a small, except if the customer is initially too
far from the driver. With electric cabs, one can consider the charging stations
as customers ordering a cab. These dummy rides have no profit, but have a very
high penalty if they are not fulfilled since an uncharged cab needs to be towed
and therefore is temporarily withdrawn from the fleet.

In a situation where we treat the customers first-in first-out, we can assign
the nearest cab available. This technique is not efficient if the demand is high.
A cab really far from a customer will be assigned to this customer if it is the
only one available. However, if a closer cab gets available one minutes later, the
assignment will not change even if the new cab is a better fit. Hence, the first-
in/first-out strategy leads to an almost random assignment [6]. A driver might
also drive more to reach the customer than to perform the ride, which leads to
a loss of money.

To increase the driver’s profit, we can use a matching. We pair drivers and
customers. Each driver wants to maximize his/her profit and each customer
wants to minimize the waiting time. We want pairs such that no pair of drivers
would both agree to exchange their customers. [1] This is called a stable match-
ing.

To improve the quality of the matching, a strategy consists in not immedi-
ately assigning cabs to customers [3]. Hence, all customers ordering a cab between
a period starting at time a and finishing at time b are going to be assigned at
time b using a stable matching. Note that the duration b − a has to be smaller
than the time a customer is ready to wait. Otherwise, she/he will cancel the ride
before being assigned.

To decrease the computation time, Maciejewski et al. [6] limit the list of can-
didates for a cient to the k-nearest cabs. To find a perfect matching between the
cabs and the customers, one can use the Gale-Shapley algorithm [2]. This algo-
rithm finds a stable matching between two lists of n elements. Kummel et al. [3]
adapt it to a situation where the length of each list is different.
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The emergence of electric cars allows cab companies to decrease the gas
cost. However, this brings new challenges because of the limited battery capac-
ity of the vehicles compared to a gas vehicle. Moreover, the recharge time of
an electric vehicle is much longer than refuel time. The assignment algorithms
of customer-cabs have to be rethought, because a cab might not have enough
remaining battery capacity to complete a ride that should have been assigned
to it. Consequently, one has to include the charging planning in the assignment
algorithm.

La Rocca and Cordeau [4] study the assignment problem for electric cabs.
They reuse previous assignment algorithms by estimating the consumption of a
ride and using only the cabs with sufficient charge in the selection. One heuristic
they developed includes the availability of the charging station. If the number of
available charging stations is high, the cab with less remaining battery capacity
is assigned to the customer since the cab can go to the charging station after the
ride. Otherwise, the cab with the most remaining battery capacity is assigned
to the customer [5].

Zhou et al. [7] use game theory to decide at which station a cab charges. More
precisely, they use Stackelberg games [7] where there are leaders and followers.
The leaders tell what they are going to do and the followers chose the best
response. The driver asks for a price to the charging stations when his/her cab
needs to be charged. The charging station responds with a price based on the
demand, their availability, the electricity price, and the distance between the
charging station and the driver. The Nash equilibrium reveals which charging
station the driver should go.

La Rocca et al. [4] developed a heuristic based on the demand. It has two
thresholds, one when the utilisation of the cab is high Θhigh and one when it is
low Θlow where Θhigh > Θlow When the battery charge rate of a taxi is smaller
than the threshold of the current utilisation, the taxi is sent for a permutation.
The thresholds are therefore variable and depend of the utilisation of the cab.

Before adopting an assignment policy, one can evaluate it using a simula-
tor [4]. The simulation can compute performance metrics to compare which
policy is the best. A discrete event simulator is the strategy the most used. In
such a simulator, each event happens at a discrete time and changes the state
of the simulation. In many simulators, the charging plans are recomputed after
every event [4, 5]. Often, the distances between drivers, customers, and charging
stations are approximated using the Euclidian distance between two positions [4,
3].

Depending on the goal of the policy, different metrics can be used to evaluate
the quality of the planning. For instance, Zhou et al. [7] evaluate how the electric
vehicles are evenly allocated to the charging stations in order to avoid queues
on some charging stations while others are idle. La Rocca and Cordeau measure
the idle time of each cab, the number of completed rides, and the waiting time
at the charging stations. In the case where all the cabs are owned by the same
company and drivers get a fixed hourly salary, the idle time of one specific driver
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does not matter. Hence, one can use the hourly income or the waiting time of
the customers as a metric [4]

4 Policies

A policy is the decision process one follows to obtain a solution. In our case, a
policy decides when and to which charging station a cab needs to go. A policy
takes as input the state of the fleet, i.e. the charging status of the cabs’ battery,
the schedule of the drivers, the state of the cabs (in service, charging, in transit
for charging, idle), and the demand (the expected number of rides in the coming
horizon). For the first phase of this research, we do not consider the geographic
location of neither the cabs nor the charging stations. As output, the policy
returns the time at which each cab needs to transit for a permutation at the
charging station as well as which charging station the cab is sent to.

We use different metrics to evaluate the efficiency of a policy: the number of
towings (when cabs cannot reach a charging station), the average waiting time
of the customers, and the number of cancelled rides.

Some policies are very fast to apply as they are simple rules. They can be
used to replan the charging schedule on the fly, whenever a change of situation
occurs (even minor changes). Other policies, like those based on optimisation
techniques, can take some time to compute and therefore are applied periodically,
say, every hour.

4.1 Heuristic

One heuristic we want to try is similar to the one developed by La Rocca et al. [4].
Our heuristic reacts to the demand. We define the demand as the number of rides
in an hour for a day in the week. This information can be directly estimated from
historical data. When the demand is high, we want to do as few permutations
as possible because the driver needs to achieve as many rides as possible. There-
fore, only cabs with less than 5% of remaining battery capacity are allowed to
permute. Otherwise, when the demand is low, we allow more permutations in
order to restore the fleet before the next high demand period. In such case, cabs
with 15% of remaining battery capacity or less are allowed to permute.

4.2 Constraint Optimisation Problem

We design a policy that takes decisions based on the result of an optimization.
We model the problem as a constraint optimization problem, whose solution is
a schedule of the permutations that maximizes the average charge of the fleet.

The model takes as input the following parameters. There are nd drivers and
nb charging stations. The schedule has a planning horizon of h = 1 hour. The
time for charging a car is R but the driver only needs b units of time to permute
the uncharged car with the charged one at the station. The initial charge of
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driver i’s cab is ai and the maximum charge a cab can have is λ. The decharging
rate of a cab is approximated with ρ.

The complete optimization model is given below. The decision variable Ui is
a Booleean variable that is true if the driver i goes to the charging station in
the coming hour. Should driver i permute his/her car, the decision variable Ti
tells at what time driver i is going to permute. Finaly, the variable Ai is driver
i’s cab remaining battery capacity at the end of the one-hour schedule.

There are only three constraints in our model. Constraint (1m) assigns the
final remaining battery capacity of the driver’s cab. If the cab goes to a charging
station, the final remaining battery capacity is the maximum battery capacity
minus the discharged occuring between the end of the permutation and the
horizon. If the cab does not go to a charging station, then the final remaining
battery capacity is the initial remaining battery capacity minus the discharge
during the horizon. In either case, the discharge is approximated with a linear
function.

We use a Cumulative constraint (1n) to ensure that cars are given a min-
imum of R units of time to recharge. This spreads out over time the arrival of
cars at the charging stations. A car i uses Ui units of the resource. Therefore,
cars that do not go to the station (Ui = 0) are ignored by the constraint.

Finaly, the third constraint (1o) breaks a symmetry in the model. If a car
does not need to go to the station, the charging time is set to a constant.

The objective (1l) is to maximize the remaining battery capacity at the end
of the hour.

The work being in progress, we did not decide yet which search strategy and
branching heuristic should be used. We aim at implementing our model with
MiniZinc and use the solver Chuffed.

5 Simulation

Before using the policies in the real planning operations, we are going to eval-
uate them with a simulation. The simulator is meant to help us convince the
managers to use our policies and to determine which policy is the best to imple-
ment in real life. Our simulator is a discrete event simulator that we build from
scratch in Python. Events include “new ride request”, “start ride”, “end ride”,
“permutation”, and “towing”.

5.1 Policies evaluation

We evaluate both policies: the one based on the heuristic and the one based on
the constraint optimisation problem. Both policies are evaluated as they would
be used in practice. For the heuristic policy, at the end of each event, we check
if a permutation is needed or not. It so, the cab is immediately sent, on the fly,
to a charging station.

The constraint optimization takes more time to evaluate than the heuristics.
Therefore, we cannot solve it after each event like for the heuristic. We want
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Parameters: nd : Number of drivers (1a)

nb : Number of charging stations (1b)

λ : Maximum battery capacity of a cab (1c)

h : Planning horizon (1d)

R : Time for a cab to recharge (1e)

b : Time for a driver to permute cars (1f)

ρ : Decharging rate (1g)

ai : Initial remaining battery capacity of the driver i’s cab
(1h)

Variables: Ti : Permutation time of driver i (1i)

Ui : 1 if the car goes to permutation and 0 otherwise (1j)

Ai : Final remaining battery capacity of the i’s driver’s cab
(1k)

Maximize:

nd∑
i=1

Ai (1l)

Under constraints: Ai =

{
ai − h× ρ if Ui = 0
λ− ρ× (h− (Ti + b)) if Ui = 1

∀ i ∈ {1, . . . , nd}

(1m)

Cumulative(T,R,U, nb) (1n)

Ui = 0⇒ Ti = h (1o)

dom(Ti) = [0, h) (1p)

dom(Ui) = {0, 1} (1q)

dom(Ai) = [5%, 100%) (1r)

Model 1: CP model

to plan the permutations once every hour. This means, every hour, we solve
the model and send the cabs for permutation according to the last computed
schedule.

As the simulation evolves, statistics are gathered to evaluate the performance
of the policies. We keep track of the average charging rate of the cabs, the average
percentage of cabs with a charge higher than a given threshold, the number of
cabs towed, and, most importantly, the number of rides.

5.2 Data analysis

The simulation instances are created by analyzing the data collected by Téo
Taxi. The number of drivers and their respective schedules are drawn from the
historical data. We do not compute statistical distribution for the schedules. We
simply use one that actually occured in the past.
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We derive a satistical distribution of the rides as follows. From the historical
data, we analyze the number of rides by a granularity of one hour for each day
of the week. We compute the mean number of rides for each hour to find the
parameter of the Poisson process of the rides. Then, we generate new rides for
each hour with that Poisson process.

To determine the length (in kilometres) of a ride, we analyze the mean and
standard deviation of the length of the rides in the historical data and deduce
the normal distribution. For each ride, we randomly generate a length according
to this distribution.

6 Conclusion

The next step of this project is to complete the implementation of the constraint
model and integrate it to the simulator. Then, we want to compute the efficency
metrics for each policy and to compare them. We also want to compare with an
off-line solution. This solution would be obtained from an optimization model
that knows the future and always takes the best decisions. This policy is an
oracle that knows exactly how the cab is going to discharge. This off-line solution
represents the best one can do. We could compare how far we are from the off-line
solution.

We also want to try a model where the horizon is 24 hours instead of one. In
this case, we cannot assume that only one permutation occur during the planning
horizon. We also have to take as input the schedule of the drivers and the cab
that are assigned to this driver.

A better policy for managing the permuations will improve the efficiency of
the taxi fleet. More cabs will be available during high-demand periods. More
rides will be accomplished and towing will be avoided.

We believe that managing the permutations of an electric taxi fleet can also
apply to a fleet of cargo trucks and that this research goes beyond the taxi
industry.
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