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Abstract. The Cumulative constraint and its many propagators are
useful to solve scheduling problems with Constraint Programming. How-
ever, most propagators only filter the starting variables of the tasks. We
propose a novel algorithm to filter the upper bound of the processing
times. We also show how to explain the filtering done by our algorithm.
This allows its use with the powerful lazy clause generation technique.
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1 Introduction

The Cumulative constraint is a useful tool to model scheduling problems us-
ing Constraint Programming. An impressive amount of work has been done to
develop and improve various filtering algorithms for that constraint. Recently,
the lazy clause generation technique [8] encouraged further work to improve the
Cumulative via explanation generation [11, 12].

However, most filtering algorithms for the Cumulative filter only the start-
ing time and ending time variables of the tasks. To the authors’ best knowledge,
there is only one algorithm, by Viĺım [15], that filters the processing times. In
this paper, we propose a new algorithm that complements Viĺım’s one. Our al-
gorithm produces its filtering by considering the compulsory parts of the tasks,
as does the Time-Tabling rule. We also show how to explain the filtering done.

We begin by presenting the Cumulative constraint and the lazy clause
generation method. We then introduce our algorithm and show how to generate
explanations from its filtering. We conclude with a discussion on future work.

2 Background

2.1 The Cumulative constraint

Let I be a set of n task indices. A task i has an earliest starting time esti, a
latest completion time lcti, a processing time pi and a height hi. The task must
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be scheduled during pi consecutive units of time, between its esti and lcti. During
that time, the task consumes hi units of a resource. From these parameters, one
can compute the earliest completion time ecti = esti +pi and the latest starting
time lsti = lcti−pi.

A task is said to have a compulsory part [lsti, ecti) if ecti > lsti. A task i
will necessarily be executing throughout its compulsory part, no matter when
the task starts. Figure 1 is an example of a task with a compulsory part. It has
an est of 0, a processing time of p = 6, an ect of 6, a lct of 10, a lst of 4 and a
height of 2. The compulsory part in gray spans the interval [4, 6) for which we
are sure that the task will execute.

lst ectest lct

0 1 2 3 4 5 6 7 8 9 10

p = 6

h = 2

Fig. 1. Task with a compulsory part in the interval [4, 6].

The Cumulative enforces that the amount of resource consumed by all tasks
in execution at a given time t must be less than or equal to the capacity C of
the resource. In other words, we have ∀t

∑
i∈I:Si≤t<Ei

hi ≤ C, where Si and Ei

are the starting time and ending time variables of a task. These variables are
subject to Si + pi = Ei

In the classic version of the Cumulative constraint, the only decision vari-
ables are the starting times. The processing times, the heights and the capacities
are constant. However, in some cases, it may be useful to have one or more of
these parameters as variables.

Suppose, for example, that the timepoints represent days, that the tasks are
jobs done by workers and that the resource is the amount of workers available.
One might want to allow the workers to do some amount of overtime each day.
In such a case, some tasks will take fewer days to complete since more hours are
worked every day. The model would try to minimize the amount of overtime.
Thus, tasks should have processing time variables in order to let the solver
shorten a task in time by means of working overtime.

In cases where the processing times or the heights are variables, it is pos-
sible to apply the same checker and filtering algorithms as for the traditional
Cumulative. However, such algorithms must only consider the lower bounds of
these variables. For instance, if we have a task with esti = 0, lcti = 4, pi ∈ [4, 10],
any filtering algorithm simply use pi = 4.

A substantial amount of work has been done to improve filtering of the
Cumulative constraint. Filtering algorithms include Time-Tabling [1], Edge-
Finder [7], Time-Tabling-Edge-Finder [14], Not-First/Not-Last [4, 10] and Ener-
getic Reasoning [6, 9].
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Most of these algorithms only filter the starting time and ending time vari-
ables. When the processing times or the heights are variables, it should be ben-
eficial to filter them. However, it is only possible to filter the upper bound of
those variables. Indeed, if a solution satisfies the Cumulative for a processing
time pi, it also satisfies the constraint for the processing time pi − 1. The same
reasoning applies for the height of the tasks. In this paper, we focus only on
filtering the processing times.

2.2 Lazy clause generation

Recently, a new technique, called lazy clause generation, has been introduced
by Ohrimenko et al.[8]. The innovation behind that technique is to combine the
strengths of SAT solvers and Constraint Programming. The approach uses the
powerful nogood learning capabilities of the SAT solvers, combined with the
specialized filtering algorithms of global constraints propagators.

To achieve that Ohrimenko et al. propose to represent the domain of integer
variables as both Boolean variables and normal integer variables. An integer
variable X can be encoded by having each Boolean variable representing a certain
aspect of the domain of that variable. For instance, the Boolean variable [[X = 5]]
indicates that the integer X has a value of 5. Similarly, [[X ≥ 5]] means that X
has a value of at least 5 and ¬[[X ≥ 5]] means that X has a value of less than 5.

In addition, constraints must be added to ensure these Boolean variables
represent valid integers. An example of such constraint is [[X = 5]] ⇒ [[X ≥ 5]].
Since the number of such constraints and variables is high in real-world problems,
Ohrimenko et al. propose to generate them only when needed in the search,
instead of generating them all at the beginning. This is what gives the name
lazy clauses generation. The details of this representation is not the focus of this
paper, more comprehensive information can be found in [8].

During the search, the SAT solver uses unit propagation and nogoods learning
as usual, using the Boolean variables. When it branches on a variable, the global
constraint propagators are called. Instead of filtering as usual, they explain the
filtering they would have done in a normal CP solver. An explanation is a SAT
clause representing the filtering, and the reason behind that filtering. The reason
is a subset of the domain of the variables that caused the filtering.

Suppose we have two variables X ∈ [0, 10], Y ∈ [5, 10] and the constraint
X ≥ Y . A propagator could detect that the lower bound of X must be filtered to
5. The reason behind that is the lower bound of the domain of Y . The propagator
could generate the explanation [[Y ≥ 5]] ⇒ [[X ≥ 5]]. This explanation is not
immediately added to the SAT solver. Instead, the search continues until a global
propagator produces a failure. When this happens, that propagator generates a
clause explaining the failure. For example, if we have X ∈ [0, 4], Y ∈ [5, 10]
and the same constraint as previously, the propagator generates the explanation
[[X ≤ 4]] ∧ [[Y ≥ 5]] ⇒ fail. At that point, the solver combines that explanation
and the explanations of the previously filtered variables to generate a nogood.
A nogood is a clause that is added to the SAT solver. Its goal is to prevent the
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solver from doing the same choices as those that led to a failure. This process is
explained in more details by Stuckey [13].

The main challenges with this technique is to adapt the existing propagators
to generate explanations. It is not trivial since the explanations need to be as
small and reusable as possible to be able to significantly reduce the search space.

Schutt et al. had great successes in explaining the Overload Check, the Time-
Tabling, the Edge-Finding and the Time-Tabling-Edge-Finding algorithms [11,
12] of the Cumulative constraint. It allowed them to close some instances of
the classic PSPLIB [5] benchmark and improve the best known upper bounds
of other instances of that benchmark.

2.3 Viĺım’s algorithm

Viĺım introduced a filtering algorithm [15] for the processing time and the height
variables. His algorithm filters the upper bound of those variables to the maxi-
mum amount such that the Overload Check [16] does not fail.

3 Processing times filtering

We propose a new algorithm that filters the upper bound of the processing time
domains. Our algorithm is similar to the time-tabling in the sense that we only
consider the compulsory parts of the tasks.

Consider that we want to filter the upper bound of the processing time of
task i. We know that we can schedule task i only in intervals where at least hi

units of resources are available at each timepoint in the interval.
We define a fixed aggregate for task i as an interval [l, u) in which, at any

timepoint, the sum of the height of the compulsory part of the tasks other than
i is greater than C − hi:

∀l≤t<u

∑
j∈I\{i}:lstj≤t<ectj

hj > C − hi

Similarly, we define a hole for task i as an interval that is not a fixed aggre-
gate. In a hole, the compulsory parts of tasks other than i do not prevent i from
executing. In other words, an interval [l, u) is a hole if and only if the following
equation holds.

∀l≤t<u

∑
j∈I\{i}:lstj≤t<ectj

hj ≤ C − hi

Figure 2 is an example of a task i with an est of 0, a lct of 10, a height of
2 and a processing time with a domain of [2, 10]. The capacity of the resource
is 3. The compulsory part of all tasks except i are represented in gray. In this
example, there are two holes, [0, 2) and [4, 8). They are represented by thick blue
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C = 3

Fig. 2. Example where a task with a height of 2 would have the upper bound of its
processing time filtered to 4. The grey parts represent the fixed part of other tasks and
the rectangles with thick blue borders are holes.

borders. The other intervals are fixed aggregates. The largest hole has a length
of 4. Thus, the upper bound of the processing time of i would be filtered to 4.

The idea behind our filtering algorithm is to use the length of the holes to
filter the upper bound of the processing times. We distinguish two cases: when
task i does not have a compulsory part and when i has a compulsory part.

If task i does not have a compulsory part, it can be executed in any hole
long enough to contain its processing time. These holes must be included in
[esti, lcti). Note that there cannot be a fixed aggregate during the execution of
the task since it would cause an overload of the resource. Hence, the length of
the largest hole in [esti, lcti) is an upper bound on the processing time of task i.

If task i has a compulsory part, it must be executing during that time. Since
the Cumulative does not allow preemption, the fraction of the processing time
of i that is not a compulsory part must be scheduled immediately before or after
the compulsory part, or both. Let la be the smallest time point such that [la, lsti)
is a hole and let ub be the largest time point such that [ecti, ub) is a hole. Task
i can execute for at most ub − la units of time.

The filtering algorithm we propose uses a datastructure called the profile, in-
spired by the one used in [3]. This datastructure is composed of several vectors.
The first vector, T , contains the lst and ect of all tasks, sorted in non-decreasing
order. The two vectors lstToTimepoint and ectToTimepoint map a task with
the index of its lst and ect in T . We can build these vectors using a process
similar to the merge procedure of the merge sort algorithm. The fourth vector
compulsoryparts, contains, at index t, the sum of the height of the compulsory
parts of all tasks in the interval [T [t], T [t + 1]). Since compulsory parts begin at
a lst and end at an ect, we know that the height cannot change between two
timepoints. To compute that vector, we begin by iterating over all tasks. For
each task j, we add hj to compulsoryparts at the timepoint lstj , where the
compulsory part of j begins. We remove hj from compulsoryparts at the time-
point ectj , where the compulsory part ends. We then compute the partial sum
of compulsoryparts, such that compulsoryparts[t] = compulsoryparts[t] +
compulsoryparts[t− 1] for all 1 < t ≤ |compulsoryparts|.

With that datastructure, we can filter the upper bound of the processing
times of the tasks. We begin by processing each task i individually. For each
task without a compulsory part, we note that a hole begins at esti. We then
process each timepoint t in the interval [esti, lcti) in non-decreasing order. If
compulsoryparts is greater than C−hi at timepoint t (ie. compulsoryparts[t] >
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C−hi), it means that the hole ends and a fixed aggregate begins. We note the size
of the hole. We continue to examine timepoints until we have compulsoryparts[t] ≤
C−hi, at which point another hole begins. We repeat the process until all time-
points in [esti, lcti) have been processed. The filtered upper bound of the pro-
cessing time corresponds to the length of the greatest hole we found. Note that
we can stop the process early if we find a hole with a length greater than the
current upper bound of the processing time. In that case, no filtering is needed.

For tasks with compulsory parts, we begin at the timepoint lsti and process
earlier timepoints one by one until we find a fixed aggregate or we are at a
timepoint smaller that esti. This give us the length of the left hole. The process
for the right hole is symmetric. We then add the length of both holes to the
length of the compulsory part (ecti− lsti) to compute the filtered upper bound.

Our algorithm has a O(n2) complexity, where n is the number of tasks.
Indeed, the profile datastructure contains at most 2n timepoints, one for each
ect and lct. Hence, the algorithm needs to examine O(n) timepoints for each
task to filter, giving us the complexity of O(n2) for all tasks.

4 Generating explanations

Our algorithm needs to generate explanations indicating the reasons behind the
filtering it produces. In this section, we assume that we want to explain the
filtering of the upper bound of the processing time of task i to a new value x.

We first add the following literals for the current est and lct of task i:
[[Si ≥ esti]] ∧ [[Ei ≤ lcti]]. We have these literals since the filtering algorithm
searches for holes only in the interval [esti, lcti). There might be a hole of greater
length outside that interval that becomes available if the est decreases or the lct
increases, as shown on Figure 3. This means that our explanations need to have
the form [[Si ≥ esti]]∧ [[Ei ≤ lcti]]∧ ...⇒ [[Pi ≤ x]]. It might be possible to extend
these literals to make the explanation more reusable. Note that we do not need
to include the lower bound of the processing time of task i in the left-hand side
of the explanation since our algorithm does not consider it when filtering.

est lct

0 1 2 3 4 5 6 7 8 9 10 11

C = 3

Fig. 3. Example where a task with a height of 2 and an lct of 10 would have the upper
bound of its processing time filtered to 2. However, if its lct increases to 11, the hole
of length 2 becomes of length 3. The filtered value of 2 is no longer valid.

There are many ways to explain the fixed aggregates, each with varying
degree of simplicity and reusability. We begin by presenting naive explanations
and then proceed to show how to improve on that.
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4.1 Naive explanation

The easiest way to produce an explanation is to include literals for the current
domain of all tasks that have a compulsory part in [esti, lcti). These tasks are
the ones that produce the fixed aggregates. For each of those tasks, we need to
include a literal for the lower bound and upper bound of its starting time and
one literal for the lower bound of its processing time. If the starting time or the
processing time become smaller than their current lower bounds or if the starting
time becomes greater than its current upper bound, the compulsory part of the
task decreases. This could create new holes that have not been considered by
the filtering algorithm. The resulting explanation is as follows.

[[Si ≥ esti]] ∧ [[Ei ≤ lcti]] ∧
∧
j∈F

(
[[Sj ≥ estj ]] ∧ [[Sj ≤ lctj ]] ∧ [[Pj ≥ pj ]]

)
⇒ [[Pi ≤ x]]

The set F is the set of all tasks that have a compulsory part in [esti, lcti).
It is possible to improve the quality of these naive nogoods with a relatively

simple adjustment. We know that, at a given timepoint, the task being filtered
can either be executed or not. If that timepoint is part of a hole, the task can be
executed. If it is part of a fixed aggregate, the task cannot be executed. Hence,
the height of the fixed aggregate only needs to be greater than C−hi. Let hFA be
the height of the fixed aggregate. We have hFA > C − hi . Thus, we can remove
tasks from the fixed aggregate as long as the previous equation holds.

To generate an explanation with this method, we proceed as follows. We iden-
tify each fixed aggregate and process them individually. For each fixed aggregate
FA, we sort the tasks in that aggregate by height. Then, we process the tasks in
non-increasing order of height. For each task, we add it to the explanation and
add its height to hFA. We stop as soon as we have hFA > C − hi.

By proceeding this way, we remove as many tasks from the explanation as
possible, compared to the naive explanation. For each task removed in that
manner, three literals are removed from the explanation.

4.2 Extended explanation

It is possible to further generalize our explanation. Instead of generating literals
representing the current domain of the tasks in the fixed aggregates, we can
extend the literals to make them more general. Sometimes, a fraction of the
compulsory part of a task is not relevant in the fixed aggregate. This can happen
if the compulsory part crosses the interval [esti, lcti) or if the compulsory part
is in part in a hole and in part in a fixed aggregate (see Figure 4). In such cases,
we can produce a literal with only the relevant fragment of the compulsory part.

Suppose we want to generate literals for the fixed aggregate [l, u). For task j
in that fixed aggregate, we generate the following literal for the lower bound of
the starting time: [[Sj ≥ min(estj , u − pj)]]. The second option in the minimum
(u−pj) represents the case where the compulsory part crosses the fixed aggregate
by the right. The segment [u, ectj) is not in the fixed aggregate and we can remove
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est lct
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Fig. 4. Example where a task of height 2 has the upper bound of its processing time
filtered to 4. The grey parts represent the compulsory part of other tasks. The com-
pulsory part with a thick red border in the interval [4, 6) is in a hole and thus is not
relevant. The part of the fixed aggregate in the interval [10, 11) is not relevant since it
is after the lct of the task to be filtered.

it from the explanation. Hence, we can reduce the earliest completion time of j
to u. Since the literal is a lower bound on the starting time, we have to convert
the earliest completion time to its equivalent earliest starting time using u− pj .

We can proceed similarly for the literal representing the upper bound of
the starting time. We use the literal [[Sj ≤ max(lstj , l)]]. The second part of
the maximum represents the case where the compulsory part crosses the fixed
aggregate by the left. In such a case, the segment [lstj , l) is not relevant and we
can generalize the literal by removing it.

We have an idea to generalize even further our explanations. We know that
the less fixed aggregates there are (and the smaller they are), the fewer literals
we have to include in the explanation. Reducing the size and quantity of fixed
aggregate is equivalent to increasing the size and quantity of holes. Fortunately,
we can easily do the latter. Recall that our filtering algorithm filters the pro-
cessing time by finding the greatest holes. This means that we can extend the
smaller holes by increasing their size up to the size of the largest hole, which
is the upper bound of the processing time. It is also possible to create holes in
fixed aggregates. However, in both of these cases, we must be careful to keep a
fixed aggregate of at least one unit between holes.

Several strategies could be used to generate and extend holes. One could, for
instance, randomly extend or create holes. It could also be possible to create
holes that would allow to remove tasks from the explanation. This could come
with a complexity cost. Experiments with various strategies will be required.

5 Conclusion

We introduced a novel algorithm to filter the upper bound of the processing times
for the Cumulative constraint. We also showed how to generate explanations
from the filtering done.

However, this is still a work in progress. The algorithm has been implemented
in C++ using the Chuffed solver [2], but experimentations are needed to confirm
its usefulness. More work will likely be needed to improve our explanation and
experiments with the different ways to generate them. We also have plans to
improve our filtering algorithm from O(n2) to O(n log n) using a tree datastruc-
ture.
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