
Tracking Pedestrians using Constraint
Programming?

Alexandre Pineault, Guillaume-Alexandre Bilodeau, and Gilles Pesant

Polytechnique Montréal, Montréal, Canada
alexandre.pineault@polymtl.ca, gabilodeau@polymtl.ca,

gilles.pesant@polymtl.ca

Abstract. This paper presents a constraint programming (CP) approach
for the data association phase found in the tracking-by-detection paradigm
of the multiple object tracking (MOT) problem. Such an approach can
solve the data association problem more efficiently than graph-based
methods and can handle better the combinatorial explosion occurring
when multiple frames are analyzed. Because our focus is on the data
association problem, our MOT method only uses simple image features,
which are the center position and color of detections for each frame.
Constraints are defined on these two features and on the general MOT
problem. Two filtering layers are used in order to eliminate detection can-
didates before using CP and to remove dummy trajectories produced by
the CP solver. Our proposed method was tested on a pedestrian tracking
dataset and outperforms several classic data association methods such
as minimum-cost flow.

Keywords: Multiple object tracking · Data association · constraint pro-
gramming.

1 Introduction

A very common approach to tackle the multiple object tracking (MOT) problem
uses the tracking-by-detection paradigm, which divides the task into two smaller
ones: the detection of objects in the video frames and the association of these
detections between frames to form trajectories for the objects of interest [9, 11,
1, 7]. These trajectories can represent data about road users that is useful to
solve higher-level problems such as improving security in our streets. Tracking
objects can help design more secure roads by analyzing road user behaviour and
finding anomalies in their trajectories before incidents actually happen [12].

This work focuses on the data association step of MOT methods. We as-
sume that our detections come from an off-the-shelf object detector (Figure 1).
The main challenges of data association are: 1) handling occlusions which occur
when a tracked entity is hidden completely or partially by other objects such
as other pedestrians or untracked foreground elements, 2) managing incoming

? This research was supported by an IVADO fundamental research grant.



2 A. Pineault et al.

and outgoing objects of interest, which means that a trajectory may not last
the whole video sequence, and 3) taking into account the imperfect performance
of the detector (bounding boxes that do not bound perfectly an object, missing
objects, false detections).

Fig. 1. Examples of detections (showed as orange bounding boxes) around objects of
interest. As they come from an imperfect detector, mistakes are often present.

The data association step can be viewed as a combinatorial problem between
current tracks (a track is a trajectory being build by the tracker) and new detec-
tions. For this reason, the use of constraint programming (CP) is an interesting
option to explore since CP has long been used to solve various combinatorial
problems [15].

This paper presents a MOT method that produces trajectories by matching
recurring objects together using a set of constraints that use the center position
and the color of detections. Our main contribution is a CP model that is adapted
to the MOT problem. Some filters are defined before and after the CP solving
phase. Our method is compared with others based on data association strategies
and with similar simple features as the ones we are using. We show that in
the case of simple features, our CP-based data association method gives better
results than min-cost flow. Using additional constraints, the proposed CP-based
data association can be extended to include other features.

2 Background and Related Work

State-of-the-art performance in multiple object tracking is currently obtained
with methods using deep neural networks to extract many automatically-learned
features [4, 11]. One of these methods [4] is using a convolutional neural network
(CNN) to build two classifiers: one for separating object categories and another
for instance classification which will differentiate objects of a same category. In
this approach, the previous classifiers are connected to a particle filter which,
combined with the appearance model, makes a prediction of where the object will
appear next. The idea of using object categories in tracking was also exploited
in the work of Ooi et al. [6]. These state-of-the-art methods focus mainly in cor-
recting missing and spurious detections using a prediction method and defining
robust features for data association. They do not study how to make the data



Tracking Pedestrians using Constraint Programming 3

association itself. They show that a strong appearance model and predicting
where an object should appear next to filter object detections are two important
components of a MOT system. However, they use a limited data association
strategy, as data association decisions are not taken over several frames by com-
bining several observations of the objects in a video. Occlusions are known to be
better resolved over several frames. Therefore, a more robust data association
method is always desirable.

Typical data association methods used in tracking are the Hungarian algo-
rithm, the joint probabilistic data-association filter (JPDAF), and the minimum-
cost flow algorithm. The Hungarian algorithm finds a maximum cost matching
in a bipartite graph where the costs are on edges [14]. As the assignment problem
can be formulated as a bipartite graph, this algorithm is one way to get the solu-
tion. It was used in several works. For example, the Hungarian algorithm can be
combined with tracklets (incomplete track parts) to make the associations [1].
These tracklets are ranked according to a confidence metric considering occlu-
sions, number of frames covered and how well the detections fit. Online detections
are matched to existing tracklets with high confidence using the Hungarian algo-
rithm maximizing the affinity level. The next step is to globally match these new
associations with low level detections using once again the Hungarian algorithm.

JPDAF is a statistical method that can track objects based on what is the
most likely outcome for each trajectory. It considers any detection available, but
also the possibility of a missing object or a false detection. It was used several
times for the MOT problem, for example, in the work of [8] and [2].

Lastly the min-cost flow algorithm combines a cost function with a greedy
algorithm in order to obtain the required tracking associations [7]. The goal
here is to formulate the data association as a minimum-cost flow problem, then
to compute shortest paths on the flow network with detections at each frame
as nodes, from the first appearance of an object to its last appearance in the
scene. This process helps ensure that the resulting trajectories are as smooth as
possible.

3 Methodology

Our tracking approach can be summarized as follows. First, detections are ob-
tained for every video frame using a pedestrian detector. These detections are
then filtered based on their confidence. Then, the detections are used to instanti-
ate the CP model and the model is solved by forming tracks with the detections.
Finally, some dummy tracks are removed before outputting the final result (a
set of trajectories). Our method is detailed in the following.

3.1 Constraint Programming Model

Main Variables In order to associate tracks to detections, variables

tij ∈ {1, 2, . . . , τ} ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ ni (1)



4 A. Pineault et al.

identify to which track (out of τ available ones) detection j at frame i belongs,
where m is the number of frames and ni the number of detections at frame i.

Such a representation is convenient to avoid unnecessary symmetries since
it uses the smallest number of possible variables: one per detection. However,
referring to consecutive detections of a given track is not easy because there is
no way to know the indices of the variables that will be part of a same track
before the solving step. Since we need this to express some of our constraints, a
second array of variables is defined,

dik ∈ {1, 2, . . . , τ} ∀ 1 ≤ i ≤ m, 1 ≤ k ≤ τ (2)

identifying the detection assigned to track k at frame i. Whenever τ > ni for
some frame i, values greater than ni do not represent actual detections — they
are however necessary because we will require that detections be uniquely asso-
ciated to tracks (see Equations 4 and 5).

To ensure that these two dual representations remain consistent with each
other, we link them using an inverse constraint

di? = inverse(ti?) ∀ 1 ≤ i ≤ m (3)

relating each variable to its counterpart in the other array.

Frame Consistency The next step is to ensure that it is impossible to find a
specific track or detection more than once at a given frame. This is a common re-
quirement for which CP provides an alldifferent constraint. Such constraints
have been specified for this purpose using the same variables as the previous
equations.

alldifferent(ti?) ∀ 1 ≤ i ≤ m (4)

alldifferent(di?) ∀ 1 ≤ i ≤ m (5)

Position Constraints After the model structure is set, constraints on features
such as position can be considered. First, an array of integers is created for each
dimension in a frame (x and y coordinates). These arrays, indexed by frame
and then by detection ID, contain the center of each detection bounding box. It
is then possible to formulate a constraint restricting the distance between two
consecutive detections in a track by stating that the one-dimensional distance
along the X and the Y axes separating them may not be greater than thresholds
λx and λy :

|xi,dik − xi+1,di+1,k
| ≤ λx ∀ 1 ≤ i < m, 1 ≤ k ≤ τ (6)

|yi,dik − yi+1,di+1,k
| ≤ λy ∀ 1 ≤ i < m, 1 ≤ k ≤ τ (7)

The same process has been tested using object scale indicators but this fea-
ture did not help to improve the solution.



Tracking Pedestrians using Constraint Programming 5

Appearance Model An appearance model is useful for minimizing the risk of
mismatch between two nearby objects. Our proposed appearance model assigns
a color class label to each detection available. The color classes are obtained
by clustering observed object color histograms in several videos. Clustering is
performed with K-Means using the Bhattacharya distance between the color
histograms. The learned classes are then used during tracking. A detection in a
frame is assigned the color class label of the nearest cluster.

A regular constraint is applied to each track preventing the association of two
objects with contrasting colors. Possible transitions between color classes for a
given object at each frame is governed by a state machine. Transitions between
similar color classes are allowed but a cost is applied based on the Bhattacharya
distance between the class centers. The solver will use the sum of all these costs
as a minimization objective.

cik = colour(dik) (8)

costregular(c?k,A, C, ak) ∀ 1 ≤ k ≤ τ (9)

min

(
τ∑
k=1

ak

)
(10)

In this equation, c represents the list of color class labels for the track detec-
tions acting as transition variables between the state machine different states.
A and C correspond respectively to the authorized transitions and the cost ma-
trix for every possible transition. Variable ak represents Track k’s total cost
computed by the regular constraint.

Each color class is represented by two states, depending on whether the object
is currently being occluded or not (e.g. red object and red occluded object).
Using different states for occlusions allows to set a cost for transitions from a
valid detection to an absence of detection while preserving the object appearance
even when it is occluded for an extended duration (see Figure 2).

3.2 Solving Strategy

Variable Selection As stated in the introduction, CP explores the combinato-
rial space of solutions by branching in a search tree that enumerates all possible
solutions. To solve our model, we first branch on the tij variables since it is the
main array containing the smallest number of variables necessary to specify a
solution whereas in the case of the dij variables, all possible tracks are instanti-
ated in case they are needed. To allow the state machine to handle occlusions or
the absence of a detection for a given track, it is necessary to branch on the cij
variables. The lexicographic order specified will make sure that branching will
always at first be made on tij variables, then on cij variables. In both cases, vari-
ables are considered frame by frame, then detection by detection in ascending
order.



6 A. Pineault et al.

istart

ov

oc

yv

yc

rv

rc

E

O YR

O

E

Y

R

O

E

YR

O

Y

E

O

Y

E

O

R

E

O

R

E

Fig. 2. Small state machine example illustrating the doubled states: visible (v) and
occlusion (c) for three color classes: red (r), orange (o) and yellow (y). Transition
values correspond to the detection color (R, O, Y) or empty (E) when there is no
detection.

Value Selection Since the tij variables are fixed from the first to the last
frame, the use of prediction becomes an interesting option to guide the search.
By computing every distance between possible pairs of consecutive detections,
it is possible to obtain a ranked list that the solver can use to branch on closest
detections first for each tij excepted for the last frame. This way, we minimize
the distance between each consecutive pair of objects without altering the model
objective oriented towards the appearance preservation.

The inherent symmetries are addressed in the branching to control the num-
ber of opened tracks available as candidate for tij variables. The domain of each
of these variables is reduced to all previously used tracked index plus one other
that may be opened if necessary. This strategy was applied before to the Steel
Mill Slab Design Problem [13].

3.3 Post Solving Computations

Once the solver has completed the associations, another type of filtering is re-
quired due to how the model is built. The model is unable to eliminate detections
entirely — the only choice that it has is to put each of them in a dummy track,
which will have to be deleted afterward. To delete them, a filter removes every
track that contains fewer than βD detections.

After the suppression of the unwanted tracks, it is possible to fill gaps in the
remaining tracks. A small state machine searches for places where there are γD
or less consecutive missing detections and fills these empty spots by adding new
detections using linear interpolation to find the correct center position and size of
the bounding box for each one. This has to be done carefully because a too large
gap probably means that an identity change has happened. Therefore, filling
missing detections in these situations would probably mean that false detections
are added.



Tracking Pedestrians using Constraint Programming 7

4 Preliminary Experiments

We tested our method on the 2D MOT 2015 challenge dataset [5]. The goal of
this challenge is to track pedestrians in eleven video sequences. The CP solver
used for these experiments is IBM ILOG CP version 1.6.

4.1 Evaluation metrics

To evaluate our method, we use the standard MOT metrics that account for
three types of errors at each frame i: 1) Identity switches (IDSi) or the number
of mismatches, 2) the missing detections or false negatives (FNi) which are the
number of objects that are not tracked, and 3) the false positives (FPi) which
stands for the number of detections representing no object of interest. With these
values it is possible to compute the MOTA score [3]

MOTA = 1−
∑
i(FPi + FNi + IDSi)∑

iNi
(11)

where Ni is the total number of ground-truth objects per frame and is
summed throughout the entire video.

A second metric known as IDF1 balances the recall and precision for each
trajectory into a single value. This is done by comparing the total number of
accurately matched detections to the average number of ground truth and given
detections [10]. Finally mostly tracked trajectories (MT ) is the ratio of ground
truth that possess a matching hypothesis for at least 80% of their life span and
mostly lost trajectories (ML) is the number of times this ratio is under 20%.
Fragmentation Frag indicates how many times any trajectory got interrupted
over its length.

4.2 Results

Table 1 compares our method with other approaches. The first two rows, HWDPL
[4] and AMIR15 [11], are to show the current performance of state-of-the-art
methods that uses multiple learned features, learned cost function and predic-
tion in future frames. The last four entries includes our method and three classic
approaches using similar simple features as ours: DP NMS (Min-cost flow) [7],
TC ODAL (Hungarian algorithm) [1] and JPDA OP, a JPDAF implementation
from the MOT challenge website 1.

Table 1 contains the cumulative scores for the eleven video sequences of the
challenge. This implies that our method was used on eleven different instances
to produce the required tracks. These results show that there are still many
improvements to be made before we can match the performance of the state-
of-the-art approaches, but it it also shows that our method surpasses many
classical approaches using similar features. The overall process took 91 seconds
to complete for 5783 frames (607 seconds).

1 https://motchallenge.net



8 A. Pineault et al.

Method MOTA IDF1 MT ML FP FN IDS Frag

HWDPL [4] 38.5 47.1 8.7% 37.4% 4005 33203 586 1263
AMIR15 [11] 37.6 46.0 15.8% 26.8% 7933 29397 1026 2024

DP NMS [7] 14.5 19.7 6.0% 40.8% 13171 34814 4537 3090
TC ODAL [1] 15.1 0.0 3.2% 55.8% 12970 38538 637 1716
JPDA OP 3.6 7.5 0.4% 96.1% 1024 58189 29 119
CP (Ours) 17.0 13.3 2.5% 58.4% 4872 43170 2973 3077

Table 1. Tracking results on the 2D MOT 2015 benchmark.

4.3 Main Challenges

Scalability MOT is a problem where the computation time is limited since
completing the tracking in real time is desired in many situations. Our approach
using CP is not currently close to this level of efficiency. Tracking video se-
quences contains often more than a thousand frames which increase the number
of possible combinations before obtaining a solution. The total number of objects
throughout the complete sequence is also impacting the computation since it di-
rectly affects the domain of the main branching variables. As a solution to this,
the data association could be applied to blocks of consecutive frames (say 100
frames). Recall that usually data association is performed only on two consecu-
tive frames. Considering more frames allows taking better long-term decisions. It
is therefore not mandatory to perform the data association with all the frames.
Finally, the complexity of the appearance model (i.e. the number of possible
appearance values) affects directly the time required to test each variable-value
combination.

Appearance Model The appearance model is important to indicate the pres-
ence of occlusions. The precision with which we describe detections will impact
the tracking accuracy. One approach may be to use vectors to describe the ob-
ject (histogram of oriented gradients, deep features). However, they are difficult
to include in a CP model without doing clustering first which may reduce the
precision of object descriptions. As said before, a complex model will also slow
down the resolution process.

5 Conclusion

This paper introduced a novel way to make data association using constraint
programming. More precisely the center position of objects and their colors are
used as main features to investigate if CP can be a valid approach to solve this
problem. There are still improvements required to be able to solve large instances
and obtain more competitive results. Future work will include developing a more
complex model that considers a larger number of features and optimizing the
search strategy in order to improve run-time.



Tracking Pedestrians using Constraint Programming 9

References

1. Bae, S., Yoon, K.: Robust online multi-object tracking based on tracklet con-
fidence and online discriminative appearance learning. In: 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition. pp. 1218–1225 (June 2014).
https://doi.org/10.1109/CVPR.2014.159

2. Bar-Shalom, Y., Daum, F., Huang, J.: The probabilistic data associa-
tion filter. IEEE Control Systems Magazine 29(6), 82–100 (Dec 2009).
https://doi.org/10.1109/MCS.2009.934469

3. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking perfor-
mance: The clear mot metrics. EURASIP Journal on Image and Video
Processing 2008(1), 246309 (May 2008). https://doi.org/10.1155/2008/246309,
https://doi.org/10.1155/2008/246309

4. Chen, L., Ai, H., Shang, C., Zhuang, Z., Bai, B.: Online multi-object
tracking with convolutional neural networks. In: 2017 IEEE Interna-
tional Conference on Image Processing (ICIP). pp. 645–649 (Sep 2017).
https://doi.org/10.1109/ICIP.2017.8296360

5. Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K.: MOTChallenge 2015:
Towards a benchmark for multi-target tracking. arXiv:1504.01942 [cs] (Apr 2015),
http://arxiv.org/abs/1504.01942, arXiv: 1504.01942

6. Ooi, H., Bilodeau, G., Saunier, N., Beaupré, D.: Multiple object tracking in ur-
ban traffic scenes with a multiclass object detector. In: ISVC. Lecture Notes in
Computer Science, vol. 11241, pp. 727–736. Springer (2018)

7. Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms
for tracking a variable number of objects. In: CVPR 2011. pp. 1201–1208 (June
2011). https://doi.org/10.1109/CVPR.2011.5995604

8. Rezatofighi, S.H., Milan, A., Zhang, Z., Shi, Q., Dick, A., Reid, I.:
Joint probabilistic data association revisited. In: 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV). pp. 3047–3055 (Dec 2015).
https://doi.org/10.1109/ICCV.2015.349

9. Riahi, D., Bilodeau, G.A.: Online multi-object tracking by detection based on
generative appearance models. Computer Vision and Image Understanding 152,
88 – 102 (2016). https://doi.org/https://doi.org/10.1016/j.cviu.2016.07.012

10. Ristani, E., Solera, F., Zou, R.S., Cucchiara, R., Tomasi, C.: Performance measures
and a data set for multi-target, multi-camera tracking. In: Computer Vision -
ECCV 2016 Workshops - Amsterdam, The Netherlands, October 8-10 and 15-16,
2016, Proceedings, Part II. pp. 17–35 (2016). https://doi.org/10.1007/978-3-319-
48881-3 2

11. Sadeghian, A., Alahi, A., Savarese, S.: Tracking the untrackable: Learning
to track multiple cues with long-term dependencies. In: 2017 IEEE Inter-
national Conference on Computer Vision (ICCV). pp. 300–311 (Oct 2017).
https://doi.org/10.1109/ICCV.2017.41

12. Saunier, N., Sayed, T., Ismail, K.: Large-scale automated analysis of vehicle in-
teractions and collisions. Transportation Research Record 2147(1), 42–50 (2010).
https://doi.org/10.3141/2147-06, https://doi.org/10.3141/2147-06

13. Van Hentenryck, P., Michel, L.: The steel mill slab design problem revisited. In:
Perron, L., Trick, M.A. (eds.) Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems. pp. 377–381. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008)



10 A. Pineault et al.

14. W. Kuhn, H.: The hungarian method for the assignment problem. Naval Res.
Logist. Quart. 2, 83 – 97 (03 1955). https://doi.org/10.1002/nav.3800020109

15. Wallace, M.: Practical applications of constraint programming. Constraints 1(1/2),
139–168 (1996). https://doi.org/10.1007/BF00143881


