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Abstract. A promising new model for future logistics networks involves
the collaboration between traditional trucks and modern drones. The
drone can pick up packages from the truck and deliver them by air while
the truck is serving other customers. The operational challenge combines
the allocation of delivery locations to either the truck or the drone, and
the coordinated routing of the truck and the drone. In this work, we
consider the scenario of a single truck and one drone, with the objec-
tive to minimize the completion time (or makespan). As our first con-
tribution, we prove that this problem is strongly NP-hard, even in the
restricted case when drone deliveries need to be optimally integrated in
a given truck route. We then present a constraint programming formula-
tion that compactly represents the operational constraints between the
truck and the drone. Our computational experiments show that solving
the CP model to optimality is significantly faster than the state-of-the-
art exact algorithm. For larger instances up to 60 delivery locations,
our CP-based heuristic algorithm is competitive with a state-of-the-art
heuristic method in terms of the solution quality.

1 Introduction

Vehicle routing problems have become increasingly important with the evolution
of online shopping and fulfillment and a variety of delivery services. The use of
unmanned aerial vehicles, or drones, for this purpose is actively explored by
industry [12]. A common model is to equip a delivery truck with one or more
drones to deliver packages in parallel to the truck [15]. Unlike the traditional
setting where a fleet of vehicles have little operational constraints to each other,
the drone operation is highly constrained to the truck operation because it needs
to pick up packages for delivery from a truck. As a result the completion time
also depends on the waiting time incurred due to the synchronization between
the truck and the drone.

In this paper we study the design of optimal joint truck and drone routes
under this scenario. We consider the elementary case where only one truck and
one drone is available. Given a set of customers to be served either by a truck
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or a drone, our objective is to minimize the completion time of the entire de-
livery task, i.e. the total time it takes to serve all customers. For operational
simplicity, we assume the drone can only be dispatched at a customer location
and the service time at each location is instant. In a feasible solution, the truck
route forms a tour which starts from and returns to the depot with a subset
of customers served along the tour. Each remaining customer is served by the
drone which is dispatched from a customer location and returns to a (possibly
different) location on the truck tour. We follow Agatz et al. [1] and call this
problem the traveling salesman problem with a drone (TSP-D).

Contributions. Our first contribution is a proof that the TSP-D is strongly
NP-hard even in the case when a truck route is given and we need to optimally
integrate the remaining drone visits. Our second contribution is a new con-
straint programming (CP) formulation that relies on representing the TSP-D
as a scheduling problem. We show experimentally that our CP approach out-
performs the best exact method from the literature, and is competitive with a
state-of-the art heuristic method in terms of solution quality.

2 Related Work

The hybrid truck and drone model was first studied by Murray et al. [11]. Agatz
et al. [1] propose an exponential-sized integer programming model. Ha et al. [6]
consider a variant where the objective is to minimize operational costs including
total transportation cost and the cost incurred by vehicles’ waiting time. Ham [7]
considers a different integrated model where after one delivery task, the drone
may return to the depot or fly to another customer to pick up a return order from
a customer, with the truck traveling separately along a cycle. Bouman et al. [2]
introduce a dynamic programming (DP) formulation of the TSP-D and solve it
with A∗ search. Yurek and Ozmutlu [17] propose a decomposition method; in the
first stage, the truck nodes and the truck routes are generated and determined
and the second stage solves a mixed-integer program to determine the optimal
drone schedule. Lastly, Poikonen et al. [13] develop a specialized branch-and-
bound procedure, which includes boosted lower bound heuristics to further speed
up the solving process. Their method assumes insertion of a customer node into a
sequence of nodes will not increase the optimal cost, which does not hold when
the drone has a finite flight range. Other heuristic algorithms have also been
proposed in the literature, see e.g. [1,3,4,5,11]. The best exact method for the
TSP-D is the DP approach in [2], which can optimally solve instances with up
to 15 locations in reasonable time.

The first theoretical study was performed by Wang et al. [16], who consider
the more general vehicle routing problem with multiple trucks and drones. They
study the maximum savings that can be obtained from using drones compared to
truck-only deliveries (i.e. TSP cost) and derive several tight theoretical bounds
under different truck and drone configurations. Poikonen et al. [14] extend [16]
to different cases by incorporating cost, limited battery life and different metrics
respectively.
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3 Problem Definition

We are given an undirected graph G = (V,E) with V = C ∪ {r} where r is
the depot and C is the set of customers to be served by the truck or the drone.
Let n = |C|. The travel time between a pair of nodes (i, j) is given by metric
w(i, j). ρ ≥ 0 is the ratio between the truck’s and the drone’s travel time per
unit distance. ρ is also called the speed differential. Every customer demands one
parcel, which can be delivered by either a truck or a drone. A drone can only
deliver one parcel at the time. We make the following assumptions about the
behavior of the truck and the drone:

(a) The truck can dispatch and pick up a drone only at the depot or a cus-
tomer location. The truck can continue serving customers after a drone is
dispatched and reconnect with the drone at a possibly different node.

(b) The vehicle (truck or drone) that first arrives at the reconnection node has
to wait for the other one, which we call synchronization.

(c) Upon returning to the truck, the time required to prepare the drone for
another launch is negligible.

Our objective is to minimize the completion time, i.e. from the time the truck
is dispatched from the depot with the drone to the time when the truck and the
drone returns to the depot.

Notation. In a feasible solution to TSP-D, denote Vd as the set of nodes
visited by the drone only. Denote Vt := V \Vd as the set of nodes including the
depot visited by the truck either with or without the drone atop the truck. By
a slight abuse of notation, we also call Vd the set of drone nodes and Vt the set
of truck nodes. For each i ∈ Vd, let p(i) be the dispatch node where the drone
is dispatched right before visiting i, q(i) be the pick up node where the drone
returns immediately after visiting i. Let Et be the set of edges in the truck tour.
For i, j ∈ Vt, let Tij denote the path induced by Et and w(Tij) =

∑
e∈Tij

we.
Consider a partial drone schedule where the drone is dispatched from the truck
at node j, visits node i and meets up with the truck at node k (we allow j = k).
We call this partial drone schedule a drone activity and use a shorthand notation
j → i→ k to represent this activity.

4 Computational Complexity

Solving the TSP-D to proven optimality is highly challenging, as witnessed by
the performance of the best exact methods—they scale up to about 15 locations
only. While the TSP-D is known to be NP-hard due to a reduction from the TSP,
we aim to provide more insight in the computational difficulty by considering a
restricted version, which we call the drone routing subproblem (DRS). We next
prove strong NP-hardness of this restricted version.

We associate the drone activity j → i→ k with a cost cijk defined as

cijk = max{0, w(j, i) + w(i, k)− ρw(Tjk)} (1)
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This is the marginal time a drone activity adds to the truck tour. Given Vt, Vd
and Et, we define a set of drone activities to be feasible if (1) each drone node
in Vd appears in exactly one drone activity and (2) any pair of activities do not
overlap in time.

We now define the drone routing subproblem as follows:

Definition 1 (Drone routing subproblem). Given Vt, Vd, Et. The drone
routing subproblem is to find a feasible set of drone activities with minimum
total drone activity cost.

We show that DRS is strongly NP-hard by a reduction from 3-partition.

Definition 2 (3-Partition). Given positive integers m,B and 3m positive in-

tegers x1, . . . , x3m satisfying
∑3m
q=1 xq = mB and B

4 < xq <
B
2 for q = 1, . . . , 3m.

Does there exist a partition of the set Y = {1, . . . , 3m} into m disjoint subsets
Y1, . . . , Ym such that

∑
q∈Yi

xq = B for i = 1, . . . ,m?

Theorem 1. The drone routing subproblem is strongly NP-hard.

Proof. We prove the theorem for ρ = 1. We give a pseudo-polynomial time
reduction from 3-partition. Given an instance of 3-partition as in Definition 2,
we construct a graph with m(B + 1) truck nodes and 4m drone nodes. The
truck route connects m paths Pi, each having B + 1 nodes and B unit edges.
Edges that connect two paths are assigned ε = 1

2m . Direct all edges in the cycle
counterclockwise. The tail of a directed path Pi is defined as the tail of the first
arc in Pi. We similarly define the head of Pi. The drone nodes are partitioned
into two disjoint sets A and B. A has 3m nodes v1, . . . , v3m. For i = 1, . . . , 3m,
vi is connected to each node on the cycle via an edge of weight xi

2 . B contains
m dummy nodes u1, . . . , um. For i = 1, . . . ,m, each ui is connected to the head
of Pi and tail of Pi+1 via two edges of weight ε

2 (we assume Pm+1 = P1). Other
edges connected to ui are assigned a unit weight so metric inequality holds.
Below we show Lemma 1, from which the theorem follows. ut

Lemma 1. There exists a 3-partition if and only if there exists a feasible solu-
tion to the above DRS instance of zero total cost.

Proof. ‘if’: connect each dummy node ui to the head of Pi and tail of Pi+1.
Without loss of generality assume the feasible partition is {x3k+1, x3k+2, x3k+3}
for k = 0, . . . ,m − 1. Then v3k+1, v3k+2, v3k+3 are connected to path Pk in the
following way: v3k+1 is connected to the first node and (x3k+1 + 1)-th node on
the path, v3k+2 is connected to (x3k+1 + 1)-th and (x3k+1 +x3k+2 + 1)-th nodes,
v3k+3 is connected to (x3k+1 + x3k+2 + 1)-th and xB+1-th nodes. It is easy to
check that the total cost is zero.

‘only if’: we claim each dummy node ui in any solution with zero total cost
must be connected to the head of Pi and tail of Pi+1: suppose not, note for any
t 6= i, ui cannot be connected to the head of Pt and tail of Pt+1 since otherwise
such a drone activity has non-zero cost. As a result any drone activity which
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Fig. 1. An example of the reduction, with m = 4, B = 7 and feasible partitions (1, 1, 5),
(1, 2, 4), (1, 3, 3), (2, 2, 3). Drone activities are shown as dashed lines and dummy nodes
are marked as solid. While each drone node has the same distance to any node on the
truck cycle, we put the drone nodes outside the cycle for visualization purposes.

visits ui covers at least a unit-length edge on the cycle. Therefore after visiting
ui, remaining edges on the cycle have at most mB − 1 + mε = mB − 1

2 < mB
length to use for visiting the remaining drone nodes. Notice each visit of a node
vl ∈ A must cover a path at least xl to make the drone activity cost zero and each
visit must cover non-overlapping path on the cycle, which is a contradiction to
the fact that the remaining edge length on the cycle is less than mB. Therefore
we’ve shown the claim. The result follows by reversing the steps in the ‘if’ part
to partition drone nodes into m sets where each set contains 3 nodes that are
visited by using edges in the same path. ut

5 Constraint Programming Formulation

An essential feature of a truck-drone schedule is the synchronization between
truck and drone operations. This poses a significant challenge to construct a
MIP model with a tight linear relaxation. Below we explain how to construct
a compact CP with O(n2) variables and constraints, using the constraint-based
scheduling formalism introduced in [8,9,10]. The CP solver IBM ILOG CP Op-
timizer [10] provides an expressive modeling language based on the notion of
interval variables representing the execution of an activity. Its domain encodes
the presence status (Boolean) (true if the activity is executed). When a is present,
it is represented by variables s(a) for its start time, e(a) for its end time, and
d(a) for its duration, obeying the relationship d(a) = e(a)− s(a). On the other
hand, an absent interval variable is not considered by any constraint or expres-
sion on interval variables in which it is involved. An activity can be forced to
present or declared ‘optional’, i.e. its presence status can be either true or false
to be decided by the solver. Below we assume all interval variables are optional
unless stated otherwise.

Recall the number of nodes including the depot is n + 1. Denote both node
0 and n as the depot (leaving and returning). For each node i define three in-
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1 minimize

2 endOf(tVisit[n])

3 subject to {
4 forall (i in 0...n) setPresent(visit[i])

5 setPresent(tVisit[0])

6 setPresent(tVisit[n+1])

7 first(tVisit, tVisit[0])

8 last(tVisit, tVisit[n])

9 no overlap(tVisit, w)

10 no overlap(dVisit)

11 forall(i in 0...n) {
12 alternative(visit[i], [tVisit[i], dVisit[i]])

13 alternative(dVisit before[i], [all (j in 0...n) tdVisit[i][j]])

14 alternative(dVisit after[i], [all (j in 0...n) dtVisit[i][j]])

15 span(dVisit[i], [dVisit before[i], dVisit after[i]])

16 end at start(dVisit before[i], dVisit after[i])

17 if then(presence of(dVisit[i]), presence of(dVisit before[i]) & presence of(dVisit after[i]))

18 forall(i, j in 0...n) {
19 if then(presence of(tdVisit[i][j]), presence of(tVisit[j]))

20 if then(presence of(dtVisit[i][j]), presence of(tVisit[j]))

21 start before start(tVisit[j], tdVisit[i][j])

22 start before end(tdVisit[i][j], tVisit[j])

23 end before end(dtVisit[i][j], tVisit[j])

Fig. 2. A compact constraint programming formulation for TSP-D. Note we can enforce
finite drone range by adding an upper bound on the duration of each dVisit[i].

terval variables: visit[i] (forced to be present), dVisit[i] and tVisit[i].
Each dVisit[i] represents the time period from the drone just leaving for
node i to the drone arriving at the first truck node after serving i. Note we
can enforce finite drone range by adding an upper bound on the duration of
each dVisit[i]. Furthermore, for each node i, we create two interval variables
dVisit before[i] and dVisit after[i] which represent splitting dVisit[i]

by the time point of the drone visiting i. For each pair (i, j), we define two inter-
val variables tdVisit[i][j] and dtVisit[i][j], where the former represents
the drone leaving from truck node j to drone node i and the latter represents the
drone leaving from drone node i to truck node j. Each tdVisit[i][j] is lower
bounded by the drone travel time from j to i and similarly for dtVisit[i][j].
As an example, an activity i → j → k is composed of tdVisit[i][j] and
dtVisit[i][k], which are constrained to be equivalent to dVisit before[i]

and dVisit after[i] respectively. The complete model is presented in pseu-
docode in Figure 2.

Lines 7-8 require the truck tour to start and end at the depot. The next
constraint requires that for each pair (i, j), their truck visits have to be at least
wij apart if both of them are served by the truck. Similarly for line 10. The
remaining constraints enforce logical constraints between different sets of inter-
val variables. For example, alternative(interval, array) creates an alternative
constraint between interval variable interval and the set of interval variables in
array. If interval is present, then one and only one of the intervals in array will
be selected by the alternative constraint to be present and the start and end val-
ues of interval will be the same as the one of the selected intervals. Line 21-23



A Study on the Traveling Salesman Problem with a Drone 7

Size 10 11 12 13 14 15 16 17 18

CP 6.79 5.71 16.66 15.66 50.83 120.59 216.46 375.49 564.22
DP 1.00 4.00 12.00 56.00 306.00 1568.00 9508.00 – –

a. Runtime comparison (s) of CP and DP (exact).

Size 10 20 30 40 50 60 70 80 90 100 200

CP 116.60 136.64 160.12 198.88 237.4 276.96 316.20 407.36 515.80 679.64 –
BAB 149.53 171.64 200.95 226.15 241.36 267.54 283.30 299.09 322.37 337.91 465.63

b. Solution value comparison of CP and BAB (heuristic).

Table 1. Comparison of our constraint programming (CP) approach with (a) the exact
dynamic programming (DP) method of Bouman et. al. [2] in terms of runtime (s), and
(b) the heuristic branch-and-bound method (BAB) of Poikonen et al. [13] in terms of
solution quality (average objective value).

implements the synchronization constraint between the truck and the drone. We
refer the reader to the manual [8] for the definition and usage of each constraint.

6 Computational Experiments

We implemented and solved our CP model with CP Optimizer version 12.8.0,
using the Python interface DOcplex. Our experiments are run on a 2.2GHz Intel
Core i7 quad-core machine with 16GB RAM. We compared our approach to the
two best approaches from the literature: the exact dynamic programming (DP)
algorithm in [2], and the branch-and-bound algorithm from [13]. The implemen-
tation of the latter relies on the assumption that the drone has a finite range,
for which the method is not guaranteed to provide optimal solutions.

We first present the results on the exact comparison. Since benchmark in-
stances used in [2] are not publicly available, we follow their approach to generate
10 uniform instances of each size. We use the same parameter ρ = 2 as speed
differential. Table 1.a reports the average runtime (in seconds) of our approach
(CP) and the reported runtime from [2] (DP). While DP can solve the smaller
problems faster than CP, our approach scales more gracefully.

Table 1.b presents the comparison with the branch-and-bound method (BAB)
of [13] in terms of solution quality. For this experiment, we apply a time limit of
10 minutes for each instance. As a benchmark, we use the same dataset as [13]
(25 instances of each size). We use the same parameter values for the speed dif-
ferential ρ = 2 and drone range R = 20. The table reports the mean objective
value for each problem size. The results for BAB are the best solutions found
among all branch-and-bound heuristic variants. We note that the runtime of the
BAB approach is typically less than one minute. In comparison, we terminate
our CP model at a time limit of 10 minutes. These results show that the time-
limited CP approach can produce competitive solutions for instances of up to
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60 locations but that the dedicated heuristic branch-and-bound outperforms CP
on larger instances.
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