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Abstract Many optimisation problems are of an online nature, where
new information arrives and the problem must be resolved periodically
in order to (a) improve previous decisions and (b) take the required new
ones. Typically, building an online optimisation system requires sub-
stantial ad hoc coding, where the optimisation problem is continually
adjusted and resolved, keeping track of which previous decisions may be
committed and which new decisions need to be taken. In this paper we
define a framework for automatically solving online decision problems.
This is achieved by extending a model of the offline optimisation problem
so that the online version is automatically constructed from this model,
requiring no further implementation. In doing so, we formalise many of
the aspects that arise in online optimisation problems.

1 Introduction

Many important optimisation problems are online in nature (see e.g., [17]),
that is, the information that defines the problem may not be finite and is not
completely known. Rather, new information arrives continuously or periodically,
and needs to be incorporated into the problem in an ongoing fashion. Consider,
for example, a traditional job-shop scheduling problem. If the complete set of
jobs is known from the start, then the problem can be solved offline to generate
an optimal (or good enough) schedule. However, it is common to only know an
initial set of jobs, with new ones arriving before all previous jobs have finished
executing the generated schedule.

Motivation Despite the strong similarities between all online optimisation
problems, current approaches to solving them are problem-specific. This is be-
cause it requires specifying how time interacts with the variables and con-
straints. This is usually done by a modeller, who can implement an update-model,
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that is, a model of the problem that combines the previous solution with the
newly arriving data.

Our goal is to create a high-level, problem- and solver-independent, frame-
work that allows a modeller to express and solve models for online problems with
the same richness and ease as currently possible for offline problems. This will
relieve programmers and modellers from the time-consuming task of reinventing
the wheel and writing error-prone online algorithms.

Contribution This paper proposes a more generic approach to online optim-
isation that enables a modeller to specify the online aspects of a problem in a
declarative way, and automates the resolving process. To achieve this, the mod-
eller adds annotations to an offline model of the optimisation problem. These
annotations specify how the data, variables and constraints in the model in-
teract with time. Once this is provided, an update-model can be constructed
automatically from the annotated model, which can then be used in an iterative
algorithm to solve the online problem. The main contributions of this paper are:

– a framework for the declarative modelling of online optimisation problems
that identifies common interactions of models with time;

– an automatic approach to transform an online optimisation model into the
update-model needed to resolve the problem that takes into account new
data and previously fixed decisions; and

– an implementation of the framework in the MiniZinc [20] system.

Our framework can also be used for sliding window decompositions of offline
problems (see e.g., [19,1]). We also developed a garbage collection mechanism
that allows removal of old data that has become irrelevant.

2 Background

A constraint optimisation problem (COP) P = (V,D,C, o) consists of a set of
variables V , an (initial) domain D mapping variables to (usually finite) sets of
possible values, a set of constraints C defined over variables V , and a selected
variable o ∈ V to minimise (without loss of generality). In practice, constraint
optimisation problems are specified by data-independent models written in a
modelling language such as MiniZinc [20], Essence [13], AMPL [11], or OPL [27].
A model M of a problem can be instantiated with data D into a concrete COP
instance P = instantiate(M,D).

Running Example: Job-Shop Scheduling This paper uses MiniZinc to
model problems. We assume familiarity with MiniZinc, and refer to the MiniZinc
web page for a detailed syntax description: https://www.minizinc.org/ [26].

Consider a job-shop scheduling problem where each job includes exactly one
task on each machine. Each job has input data about its arrival time (earliest
start time for that job), the machines that process each of its tasks, and the

https://www.minizinc.org/
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1 int: M; % number of machines
2 int: J; % number of jobs
3 set of int: MACH = 1..M;
4 set of int: TASK = 1..M;
5 set of int: JOB = 1..J;
6 array [JOB] of int: a; % arrival time
7 array [JOB ,TASK] of MACH: m; % machine for task
8 array [JOB ,MACH] of int: p; % processing time
9 int: horiz = max(a)+sum(p); % latest possible time

10
11 array [JOB ,TASK] of var 0.. horiz: s; % start times
12
13 constraint forall (j in JOB) (s[j ,1] >= a[j]);
14 constraint forall (j in JOB , k in 1..M -1)
15 (s[j,k]+p[j,m[j,k]] <= s[j,k+1]);
16 constraint forall (m in MACH)
17 ( disjunctive ([s[j,t] | j in JOB , t in TASK where m[j,t]=m]
18 , p[..,m]));
19 solve minimize max (j in JOB) (s[j,M]+p[j,m[j,M]]);

Figure 1. A MiniZinc model for job-shop scheduling.

processing time it requires on each machine. The decisions to be made are the
start times for each task of each job. A solution must satisfy the arrival times,
task order (task i must finish before the start of task j for i < j), and machine
usage constraints (each machine can only handle one task at a time), while
minimising the total makespan. A natural model for the data and decisions of
this problem is shown in Figure 1.

Solving Online Problems by Iteration As mentioned in the introduction,
given a model and solver for an offline problem, one can implement an iterative
algorithm for the online version of the problem. The assumption is that at each
time point, new jobs can be added to the problem, but the number of machines
(and thus tasks) remains constant. To illustrate this approach, we will extend
the job-shop model from Figure 1 with additional parameters to take previous
solutions into account:

int: sol_J; % number of jobs in previous solution
array [1.. sol_J ,TASK] of int: sol_s; % previous start times
int: now; % current time (in the model ’s view of time)
constraint forall (j in 1.. sol_J , t in TASK)

(if sol_s[j,t]<= now then s[j,t]= sol_s[j,t] endif);

Here, sol_J out of J jobs are old. The now parameter allows us to reason
about whether a previously scheduled job has already started running or not. If
it has, then the constraint constrain it to remain scheduled at the same time.
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online-solve(M ,D,θ): while (new data δ)
D := append(D, δ)
D′ := constrain(D, θ)
θ := solve(instantiate(M,D′))

Figure 2. An iterative algorithm for solving online problems.

We call the resulting, extended model the update-model. Once it is defined, a
simple iterative algorithm, such as the one in Figure 2, can be used to solve the
online problem at each time point. The arguments of the online-solve function are
the update-model M , the original data D, and the initial solution θ (which can
be constructed using a heuristic or by solving offline with the original data D).
As long as there is new data, the append function adds it to the current data. For
our concrete example, this means appending the data for the new jobs to the a, m
and p arrays, and adjusting J. The constrain function adds the parameters that
are used for restricting the time-dependent variables (in our job-shop example,
this means setting sol_J and sol_s according to the previous solution, and
updating now). Then the update-model is instantiated with the updated data
set and solved. The new solution θ will be used in the next iteration.

Note that for the remainder of the paper we will assume that the online
problems we consider have complete recourse [9], that is, neither the previous
solution nor the new data will ever make the problem unsatisfiable.

3 Related Work

Online problems and online solution methods have been well studied. The two
main approaches are (a) using an off-the-shelf solver with an ad hoc sliding
window algorithm wrapped around it, and (b) developing a problem-specific
algorithm. In this paper we develop a new approach by extending a solver-
independent modelling language to support online problems natively.

Approach (a) requires the implementation of an iterative resolve algorithm
that is wrapped around a particular solver, and uses a sliding window approach
where the new data arrives between resolves. Examples of this approach include
that of Bertsimas et al. [4] for solving an online vehicle routing problem. They
update the problem by adding nodes and edges to a graph, and develop their
own iterative online algorithm. See [18,23,7] for other examples. These wrapper
algorithms are often problem-specific in nature, and require the model to be
formulated in such a way it obfuscates the underlying problem.

Examples of approach (b) are more widespread, and include the algorithms
for online vehicle routing given in survey [16], and the online scheduling al-
gorithms described in [22]. In some cases, the same decisions have to be taken
repeatedly (with some or total disregard to previous decisions) over time, in real-
time. This case is often addressed by developing fast single-point algorithms or
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models that can be used to resolve with the latest data as desired, and then
replacing the old decisions with the new ones [14].

We have not found any problem-independent framework (solver-independent
or not) that enables the modelling of online problems for real-time applications
or sliding window decompositions. The closest work is the modelling language
AIMMS, which supports the modelling and use of sliding window decomposition
(referred to as “rolling horizon”) of time-based offline problems [25]. This is done
by first coding how all the parts of a model can be divided into multiple (possibly
overlapping) windows, and then coding an iteration script that iterates through
all these windows, solves them, and makes any necessary changes between the
iterations. Hence, it is really an example of approach (a). The sliding window
feature of AIMMS have been used in several works [19,3].

Often in the literature, dynamic constraint satisfaction problems (DCSPs)
are used to reason on online and dynamic problems [12]. DCSP is potential a
formalisation of our proposed high-level modelling framework.

Note that, in this paper, we do not look into stochastic and advanced forms of
dynamic online optimisation (see [28,29,2,5]) nor robustness and stability criteria
(see [8]), all of which we consider future work. Some other interesting concepts
include Constraint Networks on Timelines [21], Constraint Programming for
Real-Time Allocation [15], and iterative repair techniques [6].

4 Modelling Online Problems

This section introduces our extensions to the MiniZinc language to support the
solver-independent modelling of online optimisation problems. Recall the online
job-shop example from Section 2.

Below, we introduce annotations that modellers can add to a standard, off-
line MiniZinc model to capture online aspects in a concise and declarative way.
The update-model, together with the append and constrain functions (from the
iterative algorithm of Figure 2), can then be generated automatically from this
annotated model. The new annotations define some of the most common time
constraints that arise when solving an online problem. To address special cases
not covered by these annotations, the modeller is given direct access a gen-
eric function sol(x), which returns, for each variable and parameter x, the
value of x in the previous solution.1 In addition, modellers can use the function
has_sol (x) to test whether x actually existed in the previous solution, and
they can make use of the now parameter in their time constraints.

For simplicity, this paper assumes that execution will perfectly follow de-
cisions, but our framework does work either way. Using our job-shop example,
a realistic scenario would be that a task, according to the past decisions, should
have started at some time, but, according to the actual execution, the task star-
ted at another time (or perhaps not at all). To address this, we just have to set
sol () and has_sol () to reflect the execution instead of the past decisions.
1 This is analogous to the use of the function sol () in MiniSearch [24] and other

extensions of MiniZinc [10] to refer to the previous solution to a problem.
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Modelling Time and Change Since only modellers understand the relation-
ship of now—the current time in the model’s view of time—with time in the
real world, they are the ones who must define now as a parameter computed
using the system time calls already available in MiniZinc.

The first new annotation, :: online , is used to indicate which parameters
can be extended with new data at each time point. If a parameter annotated
with :: online is used to define other parameters (e.g., it is part of an array
index set), then those other parameters automatically become expendable with
new data as well.

Example 1. Consider the offline job-shop problem introduced in Figure 1, and
assume that in its online version new jobs can arrive as time progresses. To
transform the offline model for this problem into an online one, we must start by
annotating the parameter of line 2, obtaining the line int: J :: online ;,
thus indicating that parameter J might increase with time. Since J is used to
define the set JOB, this also indicates that the amount of data in each of the
arrays a, m, and p, might similarly increase with time. ut

Modelling Decisions Regarding Time In online problems, some decisions
cannot be changed after a certain time point. The most obvious of these affect
time variables, that is, variables whose domain is time itself. In particular, past
decisions that have fixed a time variable to a value earlier than the current time,
cannot be changed. Also, if such a variable is not yet fixed, then current decisions
cannot fix it to a value that is earlier than the current time. To reflect all this,
modellers can simply annotate such variables with :: time .

Example 2. Continuing the job-shop example from Figure 1, the start times
(line 11) are indeed time variables; hence, the declaration must be annotated,
resulting in array [JOB ,TASK] of var 0.. horiz: s :: time; ut

In general, the annotation of line 1 is transformed into the constraint of line 2:
1 var D: x :: time;
2 if has_sol (x) /\ now >= sol(x) then x=sol(x) else x>= now endif;

where x is a variable over domain D.

Modelling Variables Affected by Time While the domain of some variables
is not time itself, it may nevertheless reflect decisions that cannot be changed
after a certain point in time. We say that the decision is locked. To achieve this,
modellers can annotate such a variable v with :: lock_var_time (t), where t
is a variable whose domain is time and whose value is the time point after which
a decision for v cannot be changed. When annotating an array d of variables, t
must be an array of variables with the same dimensions as d.

Example 3. Consider an open-shop scheduling problem similar to that of Fig-
ure 1 except that the allocation of tasks to machines is not fixed, i.e., the array
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of parameters of line 7 is now declared as an array of variables. This means the
solver now needs to decide the order of the tasks of a job by allocating each
task to a machine, as this is no longer provided by the input data. Clearly,
once a task has started to be processed, the machine that processes it cannot
change. Thus, the online model for this problem has of line 7 the declaration
array [JOB ,TASK] of var MACH: m :: lock_var_time (s);. ut

In general, the annotation of line 1 is transformed into the constraint of line 2:
1 var D: x :: lock_var_time (t);
2 if has_sol (x) /\ now >= sol(t) then x=sol(x) endif ;

where x and t are variables over D and time, respectively.

Modelling Domains Affected by Time A more complex form of time con-
straint common in online problems, involves checking the values a variable can
take: while some of these values might need to be locked once selected, others
might become unavailable as time progresses. To achieve this, modellers can an-
notate such a variable v using the annotation lock_val_time (t), where t is
a one-dimensional array that corresponds to the declared domain of v.

Example 4. Consider a package delivery routing problem for C customers and
V vehicles, where each customer must be visited for a delivery. The problem is
modelled using a graph with N = C + 2V nodes, where there is one node for
each customer and two nodes for each vehicle v, representing the time when v
leaves from and returns to the depot. The variables include, for each node n, the
arrival time at n, the next node visited from n, and the vehicle that visits n. A
partial model for an online version of this problem is as follows:

1 int: V :: online ; % number of vehicles
2 int: C :: online ; % number of customers
3 int: horiz :: online ; % scheduling horizon
4 int: N = C + 2*V; % number of nodes
5 set of int: NODE = 1..N;
6 set of int: CUST = 1..C;
7 set of int: VEH = 1..V;
8 array [NODE] of var 0.. horiz: arrival :: time;
9 array [NODE] of var NODE: next

10 :: lock_var_time ([ arrival [n] | n in NODE ]);
11 array [NODE] of var VEH: veh
12 :: lock_val_time ([ arrival [C+v] | v in VEH ]);

In this model we may get new customers and new vehicles (a vehicle returning
to the depot becomes available as a new vehicle). The time horizon for schedul-
ing also changes as more customers arrive. The arrival time at each node is a
time constrained variable (hence, line 8). The decision about where to go next
from node n is locked at the time point where the vehicle arrives at n (hence,
line 10). Also, since the packages must be loaded onto vehicles v at the depot,
the decision of which customers v visits is locked at the time point where v leaves
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the depot. This is recorded as the arrival time at the vehicle’s start time node
arrival [C+v] (hence, line 12). ut

The lock_val_time annotation introduced above, conflates two different
kinds of restrictions: commit and forbid. These indicate, respectively, that a
decision cannot be changed or is no longer available as time progresses. We thus
define two annotations commit_val_time and forbid_val_time , where
lock_val_time is defined as the conjunction of them.

Example 5. Consider again the problem of Example 4. When deciding which
vehicle should visit each customer, it is unrealistic to add (or remove) a customer
to (or from) a vehicle if the vehicle is about to leave the depot, since it takes
time to load (or unload) the package. Assuming we need 5 minutes to pack a
new delivery, and 15 minutes to find and remove a packed delivery, the following
code (substituting that of lines 11 and 12) reflects the correct behaviour:
array [NODE] of var VEH: veh

:: forbid_val_time ( [ arrival [C+v] - 5 | v in VEH ])
:: commit_val_time ( [ arrival [C+v] - 15 | v in VEH ]);

The annotations state that the decision of assigning a customer to vehicle v
cannot be changed if v leaves in the next 15 minutes, and that a customer
cannot be (newly) assigned to a vehicle that is leaving in the next 5 minutes. ut

In general, the annotation of line 1 is transformed into the constraint of line 2:
1 var D: x :: commit_val_time (t);
2 if has_sol (x) /\ now >= sol(t[sol(x)]) then x = sol(x) endif;

where x is a variable over D, and t is an array of variables indexed by D. And, in
general, a the annotation of line 1 is transformed into the constraint of lines 2–3:

1 var D: x :: forbid_val_time (t);
2 forall (d in D where has_sol (x) /\ sol(x) != d)
3 (if has_sol (t[d]) /\ now >= sol(t[d]) then x != d endif );

where x is a variable over D, and t is an array of variables indexed by D.

5 Conclusion and Future Work

This paper presented a systematic approach for modelling and solving online
optimisation problems. We introduce several annotations that enable modellers
to describe online aspects, i.e., how the decisions in their models are related
to time, in a high-level way. This simplifies modelling and solving of online
problems significantly, making it more efficient for experienced modellers and
more accessible for novices.

Future work includes, among other things, extending the framework to ad-
dress dynamic and stochastic online problems (e.g., where known parameters
can change over time and where disruptions can occur, with or without a pri-
ori distributions or probabilities), incorporating predictions of future data while
solving, and looking at stability and robustness criteria.
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HVAC-aware occupancy scheduling with adaptive temperature control. In Michel
Rueher, editor, Principles and Practice of Constraint Programming, volume 9892
of LNCS, pages 683–700. Springer International Publishing, 2016.

19. Julien F Marquant, Ralph Evins, and Jan Carmeliet. Reducing computation time
with a rolling horizon approach applied to a MILP formulation of multiple urban
energy hub system. Procedia Computer Science, 51:2137–2146, 2015.

20. Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. MiniZinc: Towards a standard CP modelling language. In
Christian Bessière, editor, Principles and Practice of Constraint Programming –
CP 2007, volume 4741 of LNCS, pages 529–543, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

21. Cédric Pralet and Gérard Verfaillie. Using constraint networks on timelines to
model and solve planning and scheduling problems. In Jussi Rintanen, editor,
Proceedings of the Eighteenth International Conference on Automated Planning
and Scheduling, ICAPS’08, pages 272–279, Menlo Park, California, USA, 2008.
AAAI Press.
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