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Abstract. In the textile industry, the looms are now automatic, but
what is left to be automated is the scheduling process. This paper is
about the scheduling of the looms and workers doing the setup between
two jobs. We explain the problem, tools, methodologies, and constraints
to solve this NP-Hard problem. As of now, this is a work in progress.
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1 Introduction

1.1 Problem to Solve

The company financing this project is a commercial textile manufacturer. In
one of their factories, they own nearly 90 automated looms. Each loom has a set
of possible configurations and a different speed for each specific configuration.
There are approximately 800 tasks (or jobs) to assign to the looms on a horizon
of two weeks, each having different compatibility with the loom configurations.
Once the tasks are matched to a loom and a configuration, they need to be
scheduled. Each task has a priority and a due date. The objective function of
the scheduling will be to maximize the total tardiness weighted by the priority of
each task. The higher a priority is, the more penalized it will be for being late. At
the moment, this is done manually by the staff. Note that this scheduling problem
is quite similar to the NP-Complete resource constraint scheduling problem with
the addition of setup times [1]. The objective of the master’s degree related to
this paper is to automate the process of scheduling. Techniques such as linear
programming (LP) and constraint programming (CP) will be used to try and
tame the issue.

The whole project splits into three sections: planning, scheduling, and sim-
ulation. These topics will be detailed in the next sections, but the focus is set
on the scheduling since this is the topic of my master thesis. Other parts will be
done with collaborators.

The related master’s degree has begun on July 8th, 2019, therefore no sig-
nificant discovery will be presented at this point. This is mostly an overview of
the project and what has been done so far.
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1.2 Tools

As of now, empirical testing has been done on the performances of different
techniques for scheduling. According to Wen-Yang Ku et al.[4], CP offers great
performances for scheduling problems.

One of the available tools for modeling mathematical problems is MiniZ-
inc [2]. For a given model, multiple solvers can be used. This gives us the ability
to test LP and CP without hassle. Yet, knowing that CP is empirically better, it
keeps the ability to focus on it by using solver specific features. The point here
is that the planning part and scheduling part of this project can be modeled in
the same language and use the forces of both LP and CP according to which
performs better.

2 Methodology

2.1 Planning

In the planning phase, we assign all tasks in T to a loom in L. Multiple tasks
can be assigned to a loom. A loom l ∈ L can take different configurations in Cl.
Should task i be assigned to loom l, the loom must take the configuration cil ∈ Cl.
A loom is allowed to change configurations only once during the scheduling
horizon. We call this configuration change a major setup. The configuration
before the major setup is cl. The planning model decides what will be the new
configuration c′l of each loom. The choice induces a setup time Dl that is function
of cl and c′l. The next two capacities are also considered. The loom capacity Ql

is the amount of time a loom can be used on the horizon. The human resource
capacity Qr is the amount of time an engineer r can spend for all major setups.
There are minor setups between each task on a loom, but these minor setups
are omitted and are rather delegated to the scheduler.

2.2 Scheduling

Once the planning phase completed, the task i is assigned to loom A[i]. We also
know which task must be executed before or after the major setup. It is imper-
ative to set the order of the tasks. A minor setup is a “short” setup that might
last between 5 minutes to 3 hours. These setups do not change the configuration
of the looms. When there is no major setup between two jobs, there must be a
minor setup. In our model, the variable N [i] represents the task that executes
next to i. This information is necessary to compute the minor setup times. The
duration of a minor setup is function of the task i and the following task N [i]. A
minor setup is decomposed into an ordered sequence of |P | multiple tasks each
executed by a person of a profession in P . There is one setup task per profession
in P and the tasks are ordered such they are executed by professions 1, 2, . . . , |P |
in that order. The duration of these tasks is given by the parameters di,N [i],p for
p ∈ P . There are Qp people of profession p. Each profession can be seen as a
cumulative resource of capacity Qp. The schedule needs to ensure that not too
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many minor setups occur simultaneously in order not to overload the human
resources. A different profession and resources are used for the major setups.

A task i has an earliest starting time esti, a latest completion time lcti, and
a duration di. The task i can only execute, without interruption, within the time
window [esti, lcti). Let Si be the starting times of task i, Si,p be the starting
times of the setup task following task i executed by profession p. The duration of
this task depends on the next task. The time required for profession p to execute
its setup task from task i to task j is given by the parameter di,j,p.

The scheduler is used every week over a horizon tmax equal to two weeks.
Some tasks, already scheduled from the last execution of the solver, are left
untouched. This means that the parameters esti and lcti form a tight execution
window for these tasks.

A task i has a due date ei and a priority ri. A task is allowed to miss its due
date at a cost of ri for every unit of time beyond this due date. The goal is to
minimize the total tardiness:

∑
i max(0, Si + pi − ei).

2.3 Simulation

The main goal of the simulation is to evaluate the performance of the gener-
ated schedules in a context with hazards such as breakdowns. The evaluated
criteria are the setup times, job operation times, how does the plan cope with
breakdowns, etc. Every loom and human resource is modeled and scaled to the
production chain. This way, the workers’ movements are accounted for.

This simulation model will be used to test the planning/scheduling pipeline.
It will also be used by the employees to predict the impact of a strategic decision
on the lines of production.

Since the project only started recently, the scheduling model presented in the
next section does not take into account the simulation nor the stochastic aspects
of problem.

3 Scheduling Model

3.1 Constraints

Two constraints are particularly useful to model our scheduling problems: the
Cumulative constraint and the Disjunctive constraint. The Cumulative
constraint [5] is useful when for every time points, the resource usage has to be
less than or equal to the resource capacity. For instance, it will ensure that no
more than Qp setup tasks are simultaneously executed by people of profession
p. This constraint comes with efficient filtering algorithms [6].

The Disjunctive constraint is a specialization of the Cumulative con-
straint with a unit resource capacity. It prevents two tasks to overlap in time.
The Disjunctive can constrain the tasks assigned to a loom l to execute at
distinct time. To reduce the number of tasks subject to the Disjunctive con-
straint, a task and its setup tasks are merged into one longer task.
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The constraint Circuit(N [1], . . . , N [n]) is satisfied if the sequence N [1],
N [N [1]], N [N [N [1]]], . . . contains all integers between 1 and n. Consider a graph
with vertices 1..n and arcs {(i, j) | j ∈ dom(N [i])}. The vector N encodes a
Hamiltonian circuit. To turn our problem into a circuit, we add a dummy task
to N that follows the last task of each loom but precedes its first task.

Recall that the loom l has for initial configuration cl, the tasks that require
this initial configuration must execute before the major setup that occurs at
time Sl.

∀l ∈ L,∀i ∈ {i | A[i] = l ∧ Cil = cl} : Si ≤ Sl. (1)

The tasks that do not require the initial configuration require the second con-
figuration and must execute after the major setup whose duration is Dl.

∀l ∈ L,∀i ∈ {i | A[i] = l ∧ Cil ̸= cl} : Si ≥ Sl +Dl. (2)

The minor setup tasks are executed in order of profession and all setup tasks
must be executed between a pair of tasks i et Ni.

∀i ∈ T, ∀p ∈ P : Di,p = di,Ni,p (3)

∀i ∈ T, ∀p ∈ 1..|P | − 1 : Si,p +Di,p ≤ Si,p+1 (4)

∀i ∈ T : Si,|P | +Di,|P | ≤ SN [i] (5)

3.2 Objective function and branching heuristic

The objective function is to minimize the total tardiness weighted by priority.

min
∑
i∈T

Ri ·max(0, Ei − (Si +Di)) (6)

To accelerate the process of finding a solution, MiniZinc allows the use of
heuristics. Coupled with the Chuffed[7] specific priority search [3], it renders
possible the ability to guide the solver with a search value different than the
branching value.

The second heuristic is a bit more complex. First, we solve small TSP in-
stances using a TSP solver, one for each loom. The cities are the tasks and the
distances the setup times. Therefore, the optimal circuit minimizes the setup
times. The resulting circuits are sent to MiniZinc and used as an initial solution
for local search that, at each iteration, reassign 30% of the solution.

4 Conclusion

The model is still under development and it would be premature to publish any
result. We hope to obtain good solutions, i.e. solutions better than the ones
produced by a human.
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Once we obtain a working model, we will evaluate the robustness of our
solution by using a simulator. From there, we hope to come up with a second
version of the model that produces solutions robust to breakdowns. It might
also be interesting to investigate the constraints unavailable in MiniZinc such as
the WeightedCircuit. The transitions between setups can be represented as
a weighted graph, therefore making this constraint quite valuable.
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