
Learning sensitivity of schedules by analyzing
the search process ?

Marc-André Ménard1, Claude-Guy Quimper1, and Jonathan Gaudreault1

Université Laval, Québec QC, CA
marc-andre.menard.2@ulaval.ca

Claude-Guy.Quimper@ift.ulaval.ca

jonathan.gaudreault@ift.ulaval.ca

Abstract. Solving the problem is an important part of optimization. An
equally important part is the analysis of the solution. Several questions
can arise by analyzing the solution. In a scheduling problem, is it possi-
ble to obtain a better solution by increasing the capacity of a resource?
What happens to the objective value if we change a coefficient? It is
important to answer these questions not only to have a better solution,
but also for the acceptability of the solution. A lot of research has been
done on sensitivity analysis, but few articles can be applied to constraint
programming. We present a new method for sensitivity analysis that can
be applied to constraint programming. This method collects information
during the search for a solution by the solver, and more precisely about
the propagation of the Cumulative constraint. It also collects informa-
tion about the solution returned by the solver. We predict if increasing
the capacity of the Cumulative allows obtaining a better solution. We
experiment this approach on a scheduling problem but this method can
be used on other problems. The results obtained validate the presented
method.

Keywords: Sensitivity analysis · Learning · Scheduling.

1 Introduction

Scheduling problems are important for companies to execute their tasks on time
and maximize their productivity. Scheduling also helps companies to make better
decisions.

Once the scheduling is done, it is interesting for a company to answer ques-
tions and to test different scenarios. For example, how much time a company
would save by increasing the capacity of a resource? Is it possible to complete
a new order in time? What is the company’s bottleneck? That is, which re-
source causes a slowdown in the production because there is not enough of this
resource in inventory? Answering these questions is important to improve the

? Supported by APN inc, CRIQ, and the Natural Sciences and Engineering Research
Council of Canada (NSERC).

2 M.A. Ménard et al.

solution. This corresponds to the sensitivity analysis of the solution. The sensi-
tivity analysis is the study of the impact on the solution of changing the value
of a parameter or several parameters.

The sensitivity analysis can be done by altering the model to encode a “what-
if” scenario and solving the new problem. This process can take a lot of time
if the company has hundreds of resources or tasks. The solver may take several
minutes or hours to return a single solution. If the problem is a linear program,
it is possible to use the solution of the dual to find a range of changes for the
coefficients of the objective function or the values of the constants to the right
of the inequalities while keeping the optimality of the solution. In constraint
programming, the dual solution is not as well defined as for linear programs and
not trivial to compute. It is therefore impossible to use the same methods as for
the linear programming to make the sensitivity analysis.

This article presents a method for predicting whether increasing the capacity
of a resource would improve the solution to a scheduling problem. The method
uses the information collected on the constraint Cumulative [1] when solving
the problem and information about the resource in the solution found. It also
solves variations of the instances where the resource capacities are modified.
Once a machine learning classifier is trained, it can quickly predict, for new
instances of the problem, whether it is possible to obtain a better solution by
increasing the capacity of the resource. We take the scheduling problem, but it
is possible to apply this method to any other problem that has a Cumulative
constraint.

The rest of the article is presented as follows. First, we present the back-
ground of this research. Second, we explain the methodology. Third, we present
preliminary results of the method on a scheduling benchmark. Fourth, we present
some ideas for future work.

2 Background

2.1 Sentivity analysis

The sensitivity analysis is the study of the impact on the solution of changing
the value of a parameter. This problem is widely studied in the literature [5][6].

Hall et al. [8] identify 4 questions that sensitivity analysis attempts to answer.
The first question is to know the range of possible changes for each parameter to
keep the optimal solution. This corresponds to the shadow price of the resource.
The second question is to know the new objective value for a specific change of
a parameter. The third question is to know the new optimal solution following
a change to a parameter. Finally, the fourth question is to know the differences
for the answers to questions 1 to 3 if we apply several changes to the param-
eter values simultaneously. This article focuses on the second question. Hall et
al. [8] present algorithms for the sensitivity analysis for some type of scheduling
problem. They point out that it is more difficult to answer questions when the
problem is NP-hard.

Learning sensitivity of schedules by analyzing the search process 3

Hooker [9] proposes an approach to do sensitivity analysis on linear or discrete
problems. This method involves using the dual inference to obtain a proof of
the optimality of the solution. Any optimization problem has a dual inference.
Solving the inference dual of a problem consists in inferring the best possible
bound on the optimal objective value from the constraints. With the proof found
with the inference dual, it is possible to change the data of the problem as
long as the proof remains valid. Hooker [9] shows an example on a 0-1 linear
programming problem. Dawande et al. [4] extend this idea to Mixed Integer
linear programming problem.

Hadzic et al. [7] use binary decision diagrams (BDD) to enumerate possible
solutions to the problem. This can take a lot of time for a big problem, but
allows afterward to answer questions very quickly. It allows the user to answer
questions about the right-hand side of an inequation but also about the variables
domain. For example, what is the best solution to the problem if a variable is
set to a value?

2.2 Lazy clause generation

The solver we use for our experiments is Chuffed [3]. It uses the lazy clause gen-
eration to take advantage of the high level modeling and understanding of the
structure of the problem of constraints programming and the inference graph
of SAT solvers [11]. This approach makes it possible to model the problem us-
ing global constraints that make stronger connections between variables and to
create no-goods that avoid the search to explore an already visited subtree for
which no solution exists. Our method uses no-goods as a feature. We modify the
chuffed solver to collect data on the no-goods.

In a solver using no-goods, propagators must find an explanation for their
filtering. This explanation can be represented as a clause which is a disjunction
of literals. A literal is a Boolean variable which can be represented in this form
[[x ≤ v]] where x is a variable and v is a value. This litteral indicates that x is
smaller than or equal to v. A literal can also take the following form [[x = v]]
for the equality between a variable and a value. All the clauses found by the
propagators form an implication graph to explain the domain changes of the
variables. When a constraint is unsatisfiable, it is possible, using the implication
graph, to extract a reason why the constraint is unsatisfied. This creates a no-
good which is itself a clause i.e. a disjunction of literals that can be used for the
rest of the search anywhere in the search tree.

3 Methodology

This section shows our method used to predict whether increasing the capacity
of a resource provides a better solution.

We use a machine learning classifier to predict whether increasing the capac-
ity of a resource improves the objective value of a scheduling problem. This is a
classification problem with 2 classes. Class 0 represents that there is no change

4 M.A. Ménard et al.

to the objective value and class 1 represents an improvement in the objective
value.

We use two types of information as features. First, there is the information
collected during the solver’s search for a solution. Then there is the problem-
specific information called knowledge specific.

For the constraint Cumulative, we use the time-tabling [2] and time-tabling-
edge-finder [12] filtering rules. During the search for a solution by the solver, it is
possible to collect several information about the Cumulative constraints. The
information we collect is the number of inconsistencies of the time-tabling, the
number of times that the time-tabling filtered the domain of a variable, and the
amount of the filtering of the time-tabling. From this information, it is possible
to have the average filtering amount when the constraint filters. It is possible to
obtain the same information for the time-tabling-edge-finder.

We use the constraints programming solver Chuffed. Since we use a solver
generating no-goods, it is important to link a no-good to the constraints used to
generate it. Without this link, a lot of information about the constraints would
be lost. No-goods can perform the majority of filtering for some part of the
problem. As a no-good is generated from explanations of several constraints, it
is not possible to link a no-good to a single constraint. To link the constraints to
the no-good we first create a map between the explanations and the constraints
that generated this explanation. Then, we link the no-good to the constraints
by checking the explanations used to generate the no-good and the constraints
that generated these explanations. Also, if a no-good b is generated by an ex-
planation of another no-good a, we bind the new no-good b to the constraints
that generated the no-good a. In the end, if a no-good induces a filtering or a
backtrack, it will be possible to give credits to the constraints that inferred that
no-good.

We use three knowledge specific information for the prediction. First, there
is the utilization rate of the resource. The utilization rate Urate

r of a resource r is
calculated by the equation (1) where pi is the processing time of task i ∈ I, hri
is the amount of the resource r used to execute task i and M is the makespan
of the solution. It is the amount of energy (pi · hri) consumed by the tasks over
the availability of the resource (cr ·M).

Urate
r =

∑
i∈I pi · hri
cr ·M

(1)

Secondly, we computed, as a feature, the duration Umax
r for which the re-

source r is used at full capacity. Let Ur,t be the usage of the resource r at time
t. Umax

r is the number of time points at which the resource is fully used.

Ur,t =
∑

i∈I:si≤t<si+pi

hri (2)

Umax
r = |{t | Ur,t = cr}| (3)

Third, there is the number of times Wr a task waits after a resource to start.
In other words, the number of times a task could have started if it did not need

Learning sensitivity of schedules by analyzing the search process 5

the resource. To get this information, we must make sure that the task does not
start because of a resource and not because of a precedence with another task.
This number is calculated with equation (4) where predi is the set of predecessors
of the task i.

Wr = |{i ∈ I | si 6= max
j∈predi

(sj + pj) ∧ Ur,si−1 + hri > cr}| (4)

To train our classifier, we need to create a training dataset. First, we solve
the original problem by collecting the constraint information when solving the
problem and the knowledge specific resource information. Subsequently, for each
resource, the problem is solved again by increasing the capacity of the resource
by a certain percentage. We use the new objective value to know whether or
not increasing the capacity allows to have a better solution to the scheduling
problem. Creating the training dataset takes a lot of time as it requires to solve
multiple instances, but once the classifier is trained, it can be used to predict
whether increasing the capacity of the resource leads to a better objective func-
tion.

While training, it is possible that the solver does not find the optimal solution
to the problem. We still keep the instance for training. However, if the solver
finds a solution that is worse than the original solution when increasing the
capacity of a resource, we remove these observations from the dataset as it is
not possible to obtain a worse solution by increasing the capacity of the resource.
With a higher capacity for a resource and a sufficient time for the solver, the
solver would find a solution with an objective value equal to or better than the
original objective value.

4 Results

For our experiments, we use the PSPLib dataset [10]. We experimented on four
benchmarks of the job-shop scheduling problem: j30, j60, j90 and j120. The
benchmark j30, j60 and j90 contain 480 instance and the benchmark j120 con-
tains 600 instance. Each instance of the problem has precedence between tasks
and four Cumulative constraints. The objective function is to minimize the
makespan. We used the model provided by Minizinc1. For the constraint Cumu-
lative, we use the time tabling and time-tabling-edge-finder as filtering rules.

For each resource, we experimented with increasing the capacity of the re-
source by different percentages. The higher the percentage, the higher the ob-
jective value may improve.

The dataset is unbalanced. There are often more resources for which increas-
ing capacity does not change the objective value (class 0). The most unbalanced
instance is for the j60 benchmark with 10% change in resource capacity. For this
instance, there is 76% of the resources in class 0. Even with 100% increase in
capacity, the dataset remains unbalanced in favor of class 0. There is only for

1 https://github.com/MiniZinc/minizinc-benchmarks/tree/master/rcpsp

6 M.A. Ménard et al.

the benchmark j120 that there is more class 1 than class 0 with 62% of class 1
with a change of capacity of 100%.

For our experiments, we separate our dataset into training datasets and test
datasets. In the dataset, we do not take into consideration which instance the
resource belongs. For example, for experiments on the benchmark j30 instances
of PSPLib, we mix all resources without considering which instance they belong
to. We take 80% of the resources for the training set and the remaining 20% for
the test dataset.

We apply a min-max normalization on the data to scale them between 0
and 1. The equation (5) shows the transformation applied to each values of the
features where x is the value of a feature and min(x) and max(x) returns the
minimum and maximum values of the feature in the dataset.

xnewi =
xi −min(x)

max(x)−min(x)
(5)

To perform the prediction, we tested three different classifiers in scikit-learn2

with different parameters using a grid search: logistic regression, SVM and ran-
dom forest.

For the logistic regression classifier, we tested different values for the C pa-
rameter that controls the trade-off between the simplicity of the model and de-
gree of learning. The values tested are: 0.001, 0.01, 0.1, 1, 10, 100, and 1000. The
best value of the parameter changes according to the data set and the percentage
of change.

For support vectors classifier (SVM), we use a radial core basis function (rbf)
for the kernel. We tested the following values for the parameter γ: 0.01, 0.1, 1,
10, and 100. The higher the value of γ, the more the model tries to fit the
training dataset. The other parameter tested is the C parameter which controls
the trade-off between the simplicity of the model and the degree of learning. The
values tested are: 0.001, 0.01, 0.1, 1, 10, 100, 1000. Like the logistic regression
classifier, the best values of the parameters change according to the dataset and
the percentage of change.

For the random forest classifier, we took 100 estimators and tested different
values for the max depth parameter. This parameter indicates the maximum
depth of the tree. The values tested are all numbers between 1 and 32.

Table 1 shows the accuracy obtained by each classifier on the different datasets
and the percentage of change in the capacity of the resources. The random forest
classifier usually gets better accuracy than the other classifiers tested. We can
also notice that we get a worse precision for the problems j30. This may be due
to the fact that these problems are much easier to solve than others and little
information is collected on the Cumulative constraints during the resolution.

Table 2 shows the precision and the recall for the random forest classifier
on the different datasets and different percent of change of capacity. Precision
indicates how many times the classifier made a good prediction when it pre-
dicted the class. The recall indicates the number of times that the classifier has

2 https://scikit-learn.org/stable/

Learning sensitivity of schedules by analyzing the search process 7

Table 1. Accuracy (%) of classifiers on different datasets.

Classifiers accuracy (%)

Instances Capacity change (%) Logistic regression SVM Random forest

j30 10 78.24 78.70 75.93
20 75.46 77.31 75.46
30 80.09 80.09 81.94
50 75 75.46 79.63
100 75 75.93 80.09

j60 10 84.64 85.39 88.01
20 89.22 89.59 91.45
30 86.62 89.22 88.1
50 88.1 89.22 88.85
100 87.36 89.59 90.33

j90 10 89.49 90.22 91.67
20 86.07 88.93 89.29
30 88.26 86.83 89.68
50 89.75 89.75 90.11
100 87.94 88.3 90.43

j120 10 80.7 81.8 86.62
20 85.16 86.24 88.39
30 86.41 87.26 89.17
50 85.17 86.44 87.92
100 83.9 86.65 88.35

predicted the class on the number of times the class is present in the dataset.
For example, if the classifier only predicts class 0, it would have a recall of 1, but
a low precision. In the results, precision and recall are always close to accuracy.
The classifier does not favor one class more than another during training.

5 Future work

The results obtained are preliminary results. Several other classifiers remain to
be tested such as neural networks. We also want to experiment with different
types of normalization to improve the prediction accuracy.

It would be possible to add other knowledge specific information to improve
the prediction. For example, rather than counting the number of times the task
waits after a resource, we could add the length of the wait as a feature.

Also, sensitivity analysis usually involves finding the range of change of a
parameter. It would be possible to test whether to decrease the capacity of the
resource allows to keep the same objective value.

We also want to test doing a regression instead of a classification to predict
how much we are improving the objective value by increasing the capacity of a
resource. It would be more interesting for a company to predict which resource
to buy and how much the objective value changes with these new resources. So,
the company could compare the gain of buying a resource with its cost.

8 M.A. Ménard et al.

Table 2. Precision and recall of random forest classifier on different datasets.

Precision (%) Recall (%)

Instances Capacity change (%) Accuracy (%) 0 1 0 1

J30 10 75.93 78 72 83 66
20 75.46 77 73 79 71
30 81.94 82 81 84 79
50 79.63 80 79 81 78
100 80.09 81 80 81 79

J60 10 88.01 91 83 89 87
20 91.45 90 94 95 87
30 88.1 88 88 91 85
50 88.85 88 90 92 85
100 90.33 88 94 95 85

J90 10 91.67 94 86 94 87
20 89.29 93 82 91 86
30 89.68 94 82 91 87
50 90.11 94 83 91 88
100 90.43 94 84 92 88

J120 10 86.62 86 87 78 92
20 88.39 88 89 80 93
30 89.17 90 89 82 94
50 87.92 87 88 80 93
100 88.35 89 88 82 93

Furthermore, it would also be interesting to predict for an instance of the
problem which resource is the bottleneck. This will avoid having to run the
classifier on all resources and instead give a suggestion on the important resources
to buy. We could also incorporate the detection of a combination of resources that
creates the bottleneck of the problem. In other words, increasing the capacity
of one of the two resources does not improve the objective value, but increasing
the capacity of both resources improves the objective value.

We want to experiment this method on real data from the manufacturing
company APN inc. APN is a high-precision manufacturing company working
in the aeronautical and military field. Their scheduling problem involves more
than one hundred resources. It is therefore interesting for APN to detect which
resource would allow them to increase their production by purchasing these
resources. Especially if these resources have a low cost.

6 Conclusion

This paper presents a method to predict whether it is advantageous to have more
capacity of a resource for constraint programming problems. The combination
of learning models and the learning about the structure of the problem through
constraint programming makes it possible to answer interesting questions for
companies. Although there is still a lot of experimentation to be done, the results
obtained are very promising for the rest of the project.

Learning sensitivity of schedules by analyzing the search process 9

References

1. Aggoun, A., Beldiceanu, N.: Extending chip in order to solve complex scheduling
and placement problems. Mathematical and Computer Modelling 17(7), 57 – 73
(1993)

2. Beldiceanu, N., Carlsson, M.: A new multi-resource cumulatives constraint with
negative heights. In: Van Hentenryck, P. (ed.) Principles and Practice of Constraint
Programming - CP 2002. pp. 63–79. Springer Berlin Heidelberg, Berlin, Heidelberg
(2002)

3. Chu, G.: Improving combinatorial optimization. PhD thesis, Department of Com-
puting and Information Systems, University of Melbourne (2011)

4. Dawande, M.W., Hooker, J.N.: Inference-based sensitivity analysis for mixed inte-
ger/linear programming. Operations Research 48(4), 623–634 (2000)

5. Geoffrion, A.M., Nauss, R.: Exceptional paperparametric and postoptimality anal-
ysis in integer linear programming. Management Science 23(5), 453–466 (1977)

6. Greenberg, H.J.: An Annotated Bibliography for Post-Solution Analysis in Mixed
Integer Programming and Combinatorial Optimization, pp. 97–147. Springer US,
Boston, MA (1998)

7. Hadzic, T., Hooker, J.: Postoptimality analysis for integer programming using bi-
nary decision diagrams. In: GICOLAG Workshop (Global Optimization: Integrat-
ing Convexity, Optimization, Logic Programming, and Computational Algebraic
Geometry), Vienna. Technical report, Carnegie Mellon University (2006)

8. Hall, N.G., Posner, M.E.: Sensitivity analysis for scheduling problems. Journal of
Scheduling 7(1), 49–83 (Jan 2004)

9. Hooker, J.N.: Inference duality as a basis for sensitivity analysis. Constraints 4(2),
101–112 (May 1999)

10. Kolisch, R., Sprecher, A.: Psplib - a project scheduling problem library: Or soft-
ware - orsep operations research software exchange program. European Journal of
Operational Research 96(1), 205 – 216 (1997)

11. Stuckey, P.J.: Lazy clause generation: Combining the power of sat and cp (and
mip?) solving. In: Lodi, A., Milano, M., Toth, P. (eds.) Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems.
pp. 5–9. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

12. Viĺım, P.: Timetable edge finding filtering algorithm for discrete cumulative re-
sources. In: Achterberg, T., Beck, J.C. (eds.) Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems. pp. 230–
245. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

