
Disjunctive Scheduling with Setup Times:
Optimizing a Food Factory

Nicolas Blais1, Alexis Remartini1, Claude-Guy Quimper1, Nadia Lehoux1, and
Jonathan Gaudreault1

Université Laval, Québec, Canada
nicolas.blais.7@ulaval.ca, alexis.remartini.1@ulaval.ca,

claude-guy.quimper@ift.ulaval.ca,

nadia.lehoux@gmc.ulaval.ca,jonathan.gaudreault@ift.ulaval.ca

Abstract. In this research, we propose a new approach to solve schedul-
ing problems applied to a food factory. The goal is to schedule the recipes
in a way that minimizes the total setup time. Our model allows split-
ting a recipe in two batches if necessary. It also considers other specific
constraints like avoiding too long setup during the day shift, having a
maximum of tasks done during days shift, etc. A good heuristic based
on the idea of scheduling the most difficult task as soon as possible is
also presented. Moreover, we show how local search helps improving the
solution.

Keywords: Preemptive scheduling · Food industry scheduling · Case
study · Constraint programming · Local search.

1 Introduction

The food industry is an environment with many standards to respect that can
quickly become complex if multiple products are made simultaneously on the
same production line. In some factories, planners must manage the availability
of the ingredients and of the production line in addition to the allergens of each
product. They also have to take into account the setup time between all the
products which depends largely on the allergens of the product. For example, the
setup time typically takes much longer between a recipe that contains allergens
and a recipe that does not contain allergens. This is mainly because workers
must conduct an allergen clean-up for the entire production line between both
recipes which can involve many hours.

The aim of this work is to use a constraint programming approach to schedule
a set of tasks for a planning horizon over the weeks 5 to 8 with the objective of
minimizing the sum of all setup times. The first 1 to 4 weeks are not considered
(frozen horizon) because changes at this time generate many conflicts for the
schedule and for the procurement of raw materials. The scheduling is recomputed
weekly. The tasks must also be performed sequentially, i.e. we schedule on a
single-machine.



2 N. Blais et al.

In the literature, there are a few papers that use constraint programming
applied to the food industry. Our model, therefore, contributes to the field by
creating a set of constraints adapted for the heuristic to help the branching.
Indeed, instead of branching directly on the starting time variable, we branch
on the next variable and a set of constraints fixes the starting time variable.
Also, we use local search strategies to improve the solution’s quality for complex
instances.

This paper is divided as follows. Section 2 first describes the problem. A
literature review is proposed in Section 3. Section 4 and 5 describe the model
developed and the heuristic used in the experimentation. The local search strate-
gies tested are shown in Section 6 and we conclude in Section 7.

2 Problem Description

The problem under study in this research was observed in a food factory ded-
icated to cookies production. The company is a world recognized granola bars
and cookies producer while offering a wide range of products. These products
are, furthermore, offered without allergens. Planning such a complex products
portfolio can be especially challenging. To help the planners in their work, we
develop a model which could take their production system’s dynamics into ac-
count.

We consider a set of tasks T which correspond to cookie recipes. Each task
i ∈ T has a due date LCT i called Latest Completion Times. In addition, a task i
must start after a date EST i called Earliest Starting Time which is computed
according to the availability and the preservability of the ingredients. Each task i
has a processing time pi that is proportional to the number of cookies to produce.
The transition time (or setup time) from a task i to a task j is given by ti,j . All
production lines are stopped on the weekend and some are also idle during the
nights. These downtimes can be used to conduct a setup, but the production
itself is stopped. So, for all working days d ∈ D, there is a time shiftBegind

when the shift begins and another shiftEndd when the shift ends.
There are two kinds of tasks: production orders and planned orders. The

production orders are already scheduled and cannot be moved. So, their starting
times Si and production times pi are known and fixed. For production orders, we
therefore have EST i + pi = LCT i which leaves no freedom on the time the task
is scheduled. The planned orders needed to be scheduled so the time window in
which the task must be scheduled is not tight: EST i + pi < LCT i. Moreover,
these tasks can be executed in two segments in order to have a better use of the
production line i.e. avoiding to have unused time before shift end. For example,
a task can start on Monday, be stopped during the night and be restarted on
Friday. At the end of its execution on Friday, the task must be completed, i.e., the
time spent on Monday and Friday must sum up to the processing time. Nothing
forces the two tasks to be adjacent in the schedule i.e. there may be other tasks
running between them. When a task is executed in two parts, the duration of
each of its part must be greater or equal to a threshold minTime. Tasks can



Disjunctive Scheduling with Setup Times: Optimizing a Food Factory 3

not be separated in more than two parts, because starting a new production
can result in a drop in yield. Indeed, the first minutes of production are often
unstable. So, separating a task into too many parts increases the chances of not
getting the right amount of products in the allotted time.

There is a limit of maxTaskDay tasks that can be achieved during a workday
(or shift) to avoid that there are too many setups to make during a day. There
is only one shift per day. Furthermore, only transition time whose duration is
below a threshold denoted maxSetup are permitted during a working day in
order to avoid that the workers are idle for too long and to maximize the use of
day time. In addition, there are other constraints that are not explained in this
work because of their specificity and the brevity of this paper.

3 Literature Review

In the literature, Job-Shop Scheduling Problem (JSP) are typically solved using
Mixed Integer Programming (MIP) methods and constraint programming (CP).
The comparison between the two approaches in [5] showed that CP beats MIP
for larger instances. It is mainly explained by the disjunctive constraint presented
in [3] that is able to handle the setup time to make better filtering. As a result,
using CP for our case becomes a natural choice.

The large neighbourhood search can, moreover, be used to improve the so-
lutions quality, as demonstrated in [7]. They suggested starting the local search
with simple strategies and making them more complex until the results are good
enough because no strategy overtakes the others.

The strategies are based on those presented in [4]. Indeed, they proposed an
approach that consists of first setting the precedence of all tasks, except some
chosen randomly. Then, the solver tries to find better solutions.

4 Model

The model needed to help planners by scheduling a set of tasks for a planning
horizon with a minimum of setup time. A constraint programming approach is
used.

The model being preemptive, there are two parts for each task i1 and i2 that
are the first and the second part of a task i respectively. Let Si1 be the starting
time of the first part of the task i and dom(Si1) = [EST i, LCT i − pi] be its
domain. We assume that ESTi is always the beginning of a workday and one
day is long enough to do the task in one segment. LCTi is always at the end
of a workday. We define Si2 be the same for the second part with the following
domain: dom(Si2) = [EST i+pi, LCT i]. Their domains are not the same because
if the first part i1 starts at LCT i−pi, the ending time would be at LCT i (entirely
done the task i). So, the second part i2 would have a processing time of 0 and
starts directly after the first part at LCT i. In what follows, when we use T , this
includes the first and the second part of a task. Moreover, we add two dummy
tasks (sentinel-begin and sentinel-end) at the beginning and at the end of the



4 N. Blais et al.

schedule respectively. Their processing times are equal to 0 and they have no
transition time from and toward them. They are also included in T .

The next variable Ni is the task that follows i in the schedule. We have
dom(Ni) = T \ {i}. The objective function is to minimize the total setup time
(W ) of the scheduling for a production line, as shown in equation (1). For that,
we declare a variable that represents the transition time of tasks i toward its
next task (Ti = t[i][Ni]). Also, we set the domain of Ti to be the interval between
the smallest and the largest transition time from a task i.

Minimize: W =
∑
i∈T

Ti (1)

The disjunctive constraint (2) introduced in [2] prevents two tasks from being
executed simultaneously. It is used to filter the domain of S. This constraint takes
as arguments two parameters. The first is the set of variable starting time S and
the second is the duration of a task P i. The first variable is already defined with
Si, but for the second, we add the variable P i that represents the processing
time of a task with the setup time associated to it (P i = pi + Ti).

Disjunctive(S, P ) (2)

To further improve the performance of the model by strengthening the filter-
ing, we use a constraint called Weighted-Circuit (3) introduced in [1] representing
our problem in the form of the Travelling Salesman Problem (TSP) with t as
distance matrix. For that, we force Nsentinel-end = sentinel-begin to be able to
form a circuit. W representing the objective function.

Weighted-Circuit(N, t,W ) (3)

To model the fact that the production line is open between shiftBegin and
shiftEnd, we use the constraints (4) and (5). For that, we use the variable Ji
which represents the working day when the task i is executed (dom(Ji) = D). So,
when a day d is selected, the task i is bounded between the shiftBegind and the
shiftEndd. Another advantage is that when a day d is removed from the domain
of Ji, the domain of the starting time of the task i Si is then automatically
filtered.

Ji ≥ d⇒ Si ≥ shiftBegind, ∀i ∈ T, ∀d ∈ D (4)

Ji ≤ d⇒ Si ≤ shiftEndd, ∀i ∈ T, ∀d ∈ D (5)

What differentiates this case with other scheduling problems is that a task can
be done in two parts. As a result, to make the right amount of a product, we use
equation (6). Also, the second part i2 must imperatively be done after the first
part i1, as shown with constraint (7) so as to break symmetries. Constraint (8)
expresses that the first part cannot follow the second part of the task to help
the filtering.

p̃i1 + p̃i2 = pi, ∀i ∈ T (6)

Si1 + p̃i1 ≤ Si2 , ∀i ∈ T (7)

Ni2 6= i1, ∀i ∈ T (8)



Disjunctive Scheduling with Setup Times: Optimizing a Food Factory 5

To manage the fact that a task i is executed in one single part (the first one), we
declare the constraints (9) and (10) below. We assume that the transition time
between two tasks with the same product (or the first and the second part of a
task) is 0. So, if the first part of task i produces the whole order, the second part
has a processing time of 0 and must be done immediately after the first part. To
assure that this task is executed on the same day, the constraint (10) is added.

p̃i1 = pi =⇒ Ni1 = i2, ∀i ∈ T (9)

p̃i1 = pi =⇒ Ji1 = Ji2 , ∀i ∈ T (10)

In order to reduce the search space and obtain shorter computation times,
we only allow the last task in a working day to be preempted. If a task i cannot
be fully executed in one single part, then its first part i1 must finish at the end
of a day shift (shiftEnd), as shown in constraint (11). We force p̃i1 to take the
right value with the constraint (12). This constraint is redundant, but it helps
filter the variable p̃i1 . It is noted that the domain of p̃i1 is equal to pi when
pi is smaller than 2 times minTime (dom(p̃i1) = pi). Otherwise, the domain is
dom(p̃i1) = [minTime, pi]. Constraint (13) ensures that the minimum duration
of a task (minTime) is respected. To achieve that, we make sure that if the
first part does not entirely execute the task, then the time left is greater than
minTime.

p̃i1 < pi =⇒ Si1 + p̃i1 ∈ shiftEnd, ∀i ∈ T (11)

p̃i1 = min(pi, shiftEnd[Ji]− Si), ∀i ∈ T (12)

Si1 + pi >shiftEndd =⇒
Si1 + pi ≥ shiftEndd + minTime,

∀i ∈ T, ∀d ∈ D (13)

A specificity of the production lines concerns the maximum number of tasks that
can be achieved during a day (maxTaskDay). Tasks with a null processing time
are not included in the total number of tasks as they are not “real” tasks. We add
a new variable J ′

i that is equal to the working day if the processing time is greater
than 0 and equals -1 otherwise (see constraint (14)). Constraint (15) is a global
cardinality constraint introduced in [6] that prevents the occurrences of each
value of J ′

i from exceeding the maximum number of tasks allowed maxTaskDay.

IfThenElse(pi > 0, J ′
i = Ji, J

′
i = −1), ∀i ∈ T (14)

GlobalCardinalityLowUp(J ′,maxTaskDay) (15)

Large setups during a working day are not permitted. The duration of such a
setup is bounded by the parameter maxSetup. The constraint (16) ensures that
a transition beyond that threshold leads to a task that is performed another day.
In other words, the setup time can be done during the night shift.

Ti,j > maxSetup ∧ Ji = Jj =⇒ Ni 6= j, ∀i, j ∈ T (16)



6 N. Blais et al.

5 Search Heuristic

In order to solve the model, we create a specialized search heuristic that branches
on the variables next N, but looks at the domain of the starting time variable
S and the array of transition times ti,j to make the decision. Branching on
the variables N is a strategic choice. Indeed, if branching on Ni = v1 leads to
a failure, the solver will branch on Ni = v2 which is a significantly different
solution. If, however, the heuristic was branching on the starting time variables,
say Si = 1, upon a failure, the solver would try another value such as Si = 2.
However, starting the task i one minute later is not a significantly different
solution.

At the beginning, our heuristic chooses the dummy task sentinel-begin and
makes it the current task. Let i be the current task. The heuristic finds which
value v should be assigned to Ni. After the branching Ni = v is performed,
v becomes the new current task. To select the value v, the heuristic chooses
the task with the earliest starting time S in its domain in the first place and
breaks ties by selecting the task that is more difficult to schedule later. This is
conducted based on these rules:

– Step 1: Choose the tasks v that contains the smallest value in the domain
dom(Sv). If v is unique, choose v, else go to Step 2.

– Step 2: For each task v, computed in Step 1, calculate the sum of all the
transition times of a task not yet scheduled toward v. Go to Step 3.

– Step 3: Randomly choose the next task with probability proportional to the
sum computed in Step 2.

We still need to assign a value to the starting time variables. Instead of branching
on these variables, we add constraints to the model that force the starting time
variables to take a value as the next variables get assigned through branching.
They are not presented in this paper for lack of space.

6 Large Neighbourhood Search

Since the solver did not find an optimal solution (not even a good solution) in a
reasonable time, we used a large neighbourhood search to improve it. This idea is
still in development. We tested a few strategies. The methodology used is to first
explore simple strategies and to then continue with more complex strategies, as
suggested by [7].

The main idea of the local search used is to let the solver find the best
solution in a given amount of time. After, we use a large neighbourhood search
to improve this initial solution. For each iteration of the local search, the upper
bound used for the objective is the best solution up to now minus 1. With that,
we make sure that we have the best filtering with the weighted-circuit constraint.

The local search starts with an initial solution denoted as best solution. From
this best solution, we partition the tasks into two sets: the free tasks and the fixed
tasks. The fixed tasks are constrained to start exactly at the time they start in



Disjunctive Scheduling with Setup Times: Optimizing a Food Factory 7

the best solution. The free tasks can be assigned to any time point, as long as the
constraints of the model are satisfied. An iteration consists of partitioning the
tasks and solving the instance of the problem. This partitioned instance is easier
to solve as no decision is required for the fixed tasks. If the solver finds a solution
to the problem (a solution might not exist), this new solution becomes the new
best solution. Then, we can repeat the process with another set of fixed variables
until the termination criterion is reached. This can be done more than once since
over the executions, the upper bound of the objective function is better, which
leads to better filtering with the weighted-circuit constraint. In addition, the
initial solution changes over the executions, which can lead to better solutions
with large neighborhood search.

A way of doing this is to start with a solution and free all the tasks in the
window for the first windowSize days and fix the other tasks. If a better solution
is found, the best solution is updated. Then, we move forward the window by one
day, free the tasks within that window and fix the tasks outside that window. The
same process is repeated until the planning horizon has been covered. Figure 1
below shows this local search strategy. This can be repeated to achieve better
results.

Find first
solution

fix and free
variables

Solve

Yeshorizon
covered? End

Yes
Better

solution
found?

No

Update best
solution

Move window
one day later No

Fig. 1. Our Local Search Strategy

Moreover, another approach that can be tested is to free a window of a fixed
number of consecutive tasks instead of consecutive days. As well as to make sure
that the next variable N is fixed rather than the starting time S variable. In this
way, it gives more flexibility for the local search and the process is more stable
because there is always the same number of tasks relaxed in the schedule.



8 N. Blais et al.

The next steps would be to use different branching heuristics for the local
search. We hope to find out the one that would perform better for smaller prob-
lems. Also, we want to parallelize the local search process in order to use many
strategies simultaneously. For example, we could use many heuristics for the
same window or search for many non-overlapping windows at the same time.
Finally, another possibility is to make the first run of the sliding window on all
possible windows and note all the windows where the optimal solution was not
found or lead to a great improvement of the solution. This information would
then be used to conduct a second run that would put a greater amount of time
on these windows.

7 Conclusion

This work proposes a solution for a scheduling problem applied to the food
industry. The goal of this paper is to use constraint programming to schedule a
set of tasks on a planning horizon encompassing the upcoming 4 to 8 weeks while
minimizing the setup times. The goal is achieved by the development of a model,
the use of a heuristic, and a local search. Future works will consist in exploring
further local search strategies in order to improve the solution’s quality.

Acknowledgments: The authors would like to thank Vincent Gingras who
laid the basis of the model in the early stage of this project.

References

1. Benchimol, P., Hoeve, W.J.v., Régin, J.C., Rousseau, L.M., Rueher, M.: Improved
filtering for weighted circuit constraints. Constraints 17(3), 205–233 (2012)

2. Carlier, J.: The one-machine sequencing problem. European Journal of Operational
Research 11(1), 42–47 (1982)

3. Dejemeppe, C., Van Cauwelaert, S., Schaus, P.: The unary resource with transition
times. In: Pesant, G. (ed.) Principles and Practice of Constraint Programming. pp.
89–104. Springer International Publishing, Cham (2015)

4. Godard, D., Laborie, P., Nuijten, W.: Randomized large neighborhood search for
cumulative scheduling. In: International Conference on Automated Planning and
Scheduling. vol. 5, pp. 81–89 (2005)

5. Ku, W.Y., Christopher Beck, J.: Mixed integer programming models for job shop
scheduling: A computational analysis. Computers & Operations Research 73 (2016)

6. Oplobedu, A., Marcovitch, J., Tourbier, Y.: Charme: Un langage industriel de pro-
grammation par contraintes, illustré par une application chez renault. In: Ninth
International Workshop on Expert Systems and their Applications: General Con-
ference. vol. 1, pp. 55–70 (1989)

7. Wu, Y., Weise, T., Chiong, R.: Local search for the traveling salesman problem:
A comparative study. In: 2015 IEEE 14th International Conference on Cognitive
Informatics Cognitive Computing (ICCI*CC). pp. 213–220 (2015)


