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Abstract. The concept of balance plays an important role in many
combinatorial optimization problems. Yet there exist various ways of
expressing balance, and it is not always obvious how best to achieve it. In
this methodology-focused paper we study two cases where its integration
is deficient and analyze the causes of these inadequacies. We examine the
characteristics and performance of the balancing methods used in these
cases, and provide general guidelines regarding the choice of a method.

1 Introduction

It is natural to think of balance as “things being as equal as possible.” Yet this
notion of equality is hard to define. Suppose we have candy bags of assorted
sizes (5, 5, 6, 7, 9, 12, and 12 candies) which we want to distribute fairly to four
children. We easily observe that a perfect distribution of 14 candies per children
is not possible. What, then, constitutes a fair distribution?

We could consider as our criterion of fairness that the largest share of candies
be as small as possible, which would give us handouts of 12, 12, 16, and 16
candies. Or we could instead consider an alternative criterion and ensure that
the sum of candy discrepancies from the mean is minimal, giving us handouts
of 12, 13, 14, and 17 candies. We can notice that the optimal solution for one
criterion of fairness is not optimal for the other, and vice-versa. These options
are both “fair,” yet neither is intrinsically better or worse than the other.

This simple example illustrates how the notion of balance becomes more
ambiguous after scratching the surface. Besides, this notion deserves special at-
tention, as fairness is of paramount importance in several practical situations. In
many jurisdictions of the United States, for instance, algorithms have taken the
role of decision-makers for delicate matters such as deciding whether a defendant
awaiting trial should be released or not. Racial disparities being a sensitive issue,
these algorithms need to ensure fairness in this process [1]. One study found that
African-Americans were one and a half times more likely than Caucasians to be
wrongly classified as high risk by one of these algorithms [2].

While this paper is concerned with balance in the context of combinatorial
optimization, issues of fairness also arise in the related field of game theory,
where some criteria of fairness are of a different nature. Envy-freeness ensures



that no player would want to trade his share for that of another, Pareto efficiency
guarantees that no share can be improved without worsening some other share,
and so on [3].

A tangential application combining balance types and fairness criteria is
found in social welfare functions. These functions describe the collective welfare
of a society based on the utilities, or satisfaction, of its individuals [4]. The util-
itarian function measures collective welfare as the sum of all individual utilities,
maximizing pure utility while disregarding any type equality between individu-
als. In contrast, the very fair egalitarian function considers the minimum of all
individual utilities at the expense of a lower level of global welfare [5]. The Nash
social welfare function maximizes the product of all utilities, which provides a
sort of middle ground between the two previous functions [6].

In this methodology-focused paper, we present two cases supporting the hy-
pothesis that unfamiliarity with the characteristics of balancing methods often
leads to poor choices regarding balance in combinatorial problems. We exam-
ine the characteristics and performance of several methods, and provide general
guidelines regarding the choice of a method. Section 2 introduces a few balanc-
ing methods and their characteristics, and outlines their use in the context of
constraint programming and integer programming. Two problematic cases are
studied in Sections 3 and 4. Finally, Section 5 discusses general guidelines for
the application of the various balancing methods.

2 Balancing Methods at a Glance

Given a finite collection of real-number variables X = {x1, x2, . . . , xn}, its bal-
ance has been defined in several ways in the literature. Some methods only take
into account the extremal values—constraining the most extreme points forces
the others into a shorter interval. Other methods consider all values, and while
usually more computationally expensive this often results in an improved distri-
bution (relative to the aims of the problem). This section covers four common
balancing methods.

The minmax method is rather crude and simply minimizes the maximum
value. For a collection of n points, the global distance between these points and
their arithmetic mean µ, according to a norm p, is defined by the concept of
Lp-deviation

n∑
i=1

|xi − µ|p.

For example, L1-deviation minimizes the sum of absolute deviations from the
mean, L2-deviation minimizes the sum of squared deviations from the mean,
and L∞-deviation minimizes the maximum deviation from the mean.

These balancing methods display various characteristics. Dispersion represents
the size of the interval within which the points are located, and by extension



is one measure of the sensitivity to outliers. A distribution is smooth when its
points appear evenly within this interval. The number of outliers near the edges
of the dispersion interval is another measure of the sensitivity to outliers. Table 1
summarizes some characteristics of the four methods studied in this paper.1

Table 1. Some characteristics of balance.

Dispersion Smoothness Outliers
minmax Large Uneven Robust
L1-deviation Medium Varied Robust
L2-deviation Small Varied Sensitive
L∞-deviation Small Even Sensitive

When optimized with minmax, values are only bounded on one side, and as such
they show the largest dispersion. The other methods force bounds on both sides,
with L2- and L∞-deviation forcing especially tight bounds by nature. minmax
offers little smoothness as many values will tend to be grouped around the bound.
L∞-deviation is in contrast smoother—nothing is constraining the deviations
apart from forcing them to be within the interval, so their associated values will
appear somewhat randomly within this interval. Results are more varied for L1-
and L2-deviation, since there is a natural bias for values to be closer to the
mean. The lack of minimum bound for minmax makes it robust against outliers,
as does the linear expression of deviation for L1-deviation. Outliers have more
influence on L∞-deviation since both small and large values disproportionately
affect the objective, and are also more impactful on the quadratic expression of
deviation of L2-deviation.

Marsh and Schilling [7] have surveyed measures of equity, in particular related
to facility location. The authors record and briefly analyze some 20 balancing
methods which are in use in various fields. They propose some guidelines to help
in the choosing of a method.

Balancing in constraint programming (CP) is usually achieved through spe-
cial constraints. L1-deviation is handled by the deviation constraint, intro-
duced by Schaus et al. [8]. Pesant and Régin [9] balanced with L2-deviation
using the spread constraint. The dispersion constraint proposed by Pesant [10]
encapsulates multiple balancing methods, including L1-, L2-, and L∞-deviation.
Other methods, such as minmax, can be expressed with classical constraints such
as minimum and maximum.
1 This table is constructed from the observations of the solutions of the Nurse-Patient
Assignment Problem of Section 4. Observations of the “smoothness” characteristic
were inconclusive for this problem, and so this observation instead stems from the
solutions of simple bin packing problems.



Early work on balancing in mathematical programming includes a short pa-
per by Gaudioso and Legato [11] presenting a few balancing methods, among
which minmax. A recent paper by Olivier et al. [12] covers the L1-, L2-, and
L∞-deviation methods in the context of integer programming, and compares
these with equivalent CP approaches.

The next two sections present practical problems which include some form of
balancing: the assignment of courses to periods such that the loads of the periods
are balanced, and the assignment of patients to nurses such that the workloads
of the nurses are balanced.2 When these problems were initially introduced, their
balancing methods were deficient; we will show how they have been improved.

3 Balanced Academic Curriculum Problem

The Balanced Academic Curriculum Problem (BACP) attempts to find an as-
signment of courses over a number of periods such that the academic load of
a student is balanced throughout the curriculum and that course prerequisite
constraints are respected. Let

– C = {1, . . . , n} be the index set of courses,
– P = {1, . . . ,m} be the index set of periods,
– wi denote the load of course i with w =

∑
i∈C wi representing the combined

loads of all the courses,
– Q ⊂ C × C denote the set of prerequisites, where an element (i, j) indicates

that course i is a prerequisite to course j.

The objective is to maximize the balance of an assignment of the n courses
to the m periods. The BACP was originally introduced by Castro and Man-
zano [13], whose CP and IP models both achieved balance by minimizing the
maximum academic load of the periods (minmax). Further papers by Hnich et
al. [14, 15] introduced new CP and IP models using the same balancing crite-
rion. Monette et al. [16] not only used minmax but also explored other options,
namely balancing using the L1-, L2-, and L∞-deviation methods, all with a CP
model. Let L = {L1, . . . , Lm} denote the loads of the periods for an assignment.
The four objectives studied by Monette et al. can be formalized as

max
k∈P

Lk (minmax)∑
k∈P

|Lk − w/m| (L1-deviation)∑
k∈P

(Lk − w/m)
2 (L2-deviation)

max
k∈P
|Lk − w/m| . (L∞-deviation)

2 A third problem, the distribution of bikes to stations in a bike sharing system such
that the stations are balanced, has been removed for CP 2019 due to lack of space.



Starting with the premise that “neither criterion subsumes the others and
there is no a priori reason to prefer one of them,” [16] they aim to determine
how well each balance criterion approximates the others. Their findings are repro-
duced in Table 2, where rows represent optimized criteria and columns represent
evaluated criteria. For example, at the intersection of row “L1-deviation” and
column “minmax” is the value 2.63. This means that if the problem is optimized
with regard to L1-deviation, and that we then evaluate minmax on that so-
lution, it will be on average 2.63% higher than if the problem was optimized
with regard to minmax. In other words, optimizing a problem with regard to
L1-deviation is a decent approximation of minmax, as that solution will be on
average only 2.63% worse than optimizing directly with minmax. The average
of a row represents how well the balance criterion approximates the others in
general, while the average of a column represents how well the balance criterion
is approximated by the others in general.

Table 2. Comparison of the balance criteria for the BACP (reproduced from [16]).

minmax L1-dev. L2-dev. L∞-dev. Average
minmax 0.00 10.62 16.53 0.06 9.07
L1-deviation 2.63 0.00 6.27 0.12 3.00
L2-deviation 0.28 0.00 0.00 0.00 0.09
L∞-deviation 10.37 18.07 23.66 0.00 17.36
Average 4.43 9.56 15.48 0.06

Monette et al. observed that the optimal solutions of L2-deviation were
often also optimal for the other methods, and thus that this method was generally
a good approximation of the others. For this reason, the authors conclude that
L2-deviation is the superior balancing method for the BACP. All methods
exhibited similar performance except for L2-deviation whose running time was
sevenfold that of the others.3 As such, they suggest using L1-deviation as a
compromise between efficiency and a good approximation of alternative methods.
Further publications by various authors on this problem and its variants also use
L2-deviation (see for example [10, 17, 18]).

4 Nurse-Patient Assignment Problem

The Nurse-Patient Assignment Problem (NPAP) seeks to assign patients to
nurses within different zones in a hospital. The patients have various acuities,
and should be assigned so as to best balance the workload among the nurses.
The workload of a nurse is defined by the sum of his patients’ acuities. Let
3 The filtering algorithms used for the balancing constraints have a linear temporal
complexity, except for L2-deviation whose complexity is quadratic.



– N = {1, . . . , n} be the index set of nurses,
– P = {1, . . . ,m} be the index set of patients,
– ai denote the acuity of patient i with a =

∑
i∈P ai representing the combined

acuities of all the patients,
– pmin and pmax denote the minimum and maximum number of patients which

can be assigned to a nurse.

The patients are located in different zones, and as such the NPAP is twofold:
Nurses must first be assigned to zones, and then patients to nurses. The objective
is to find a staffing of nurses to zones combined with a nurse-patient assignment
maximizing the balance of the nurses’ workloads. Let wj be the workload of
nurse j. The objectives can be formalized similarly as for the BACP

max
j∈N

wj (minmax)∑
j∈N
|wj − a/m| (L1-deviation)

∑
j∈N

(wj − a/m)
2 (L2-deviation)

max
j∈N
|wj − a/m| . (L∞-deviation)

The NPAP was introduced by Mullinax and Lawley [19], whose IP model
expressed the measure of imbalance for a zone as the difference between its
nurses’ lightest and heaviest workloads. The objective was then to minimize the
sum of imbalances for all the zones. Schaus et al. [20] have shown that while the
previous model may do a good job in balancing the workloads within each zone,
its objective function is deficient as this does not necessarily translate into a
good balance of workloads between the different zones. The authors constructed
CP models to solve this problem, and considered the L1- and L2-deviation
methods to minimize either the absolute or squared deviations of the workloads.
They conclude that L2-deviation is more appropriate for the NPAP due to its
increased sensitivity to outliers.

Table 3. Comparison of the balance criteria for the NPAP.

minmax L1-dev. L2-dev. L∞-dev. Average
minmax 0.00 0.61 7.45 22.81 7.72
L1-deviation 0.19 0.00 3.79 18.07 5.51
L2-deviation 0.42 0.87 0.00 1.30 0.65
L∞-deviation 0.35 0.94 0.29 0.00 0.40
Average 0.24 0.60 2.88 10.55

We have conducted similar experiments on the NPAP as Monette et al. did
for the BACP [16] by adapting the CP model of [21] with the four objectives; Our



results are reported in Table 3. The two problems share some similarities but are
nevertheless unique in their own right. The BACP imposes assignment restric-
tions in the form of course prerequisites, while in the NPAP these restrictions
are embedded in the staffing problem. Both problems have similar assignment
ratios (five courses per period and six patients per nurse, on average), but the
range of patient acuities in the NPAP is much wider than the range of course
credits in the BACP.

L∞-deviation is the best approximator for the NPAP and the worst for
the BACP, indicating that it is sensitive to the problem type. In contrast, L2-
deviation is a very good approximator for both problems, suggesting robustness
against various types of problems. As a general rule, minmax itself is not a very
good approximator, but it can be well-approximated by the other methods. The
opposite is true for L2-deviation, which is usually a good approximator for
other balancing methods but which does not tend to be approximated very well
most of the time. Performance-wise, for this CP model L1- and L2-deviation
are a few times slower than minmax and L∞-deviation.4

5 Practical Considerations

Some general guidelines concerning the choice of a balancing method can be
derived from the lessons learned in the case studies. The main points to consider
in the choice of a balancing method are its characteristics and performance.

Some of the many characteristics which can describe balance for the four
methods studied in this paper have been outlined in Section 2, namely, disper-
sion, smoothness, and number of outliers. It should be kept in mind that most
characteristics are neutral—they are not inherently desirable nor detrimental.
For instance, the distribution of well-balanced workloads would form a narrow
bell curve around the mean, since we are interested in having each worker share
a similar workload. However, a distribution with a low mode would be more ap-
propriate to balance occurrences of values representing the use of resources [22],
if we are interested in mitigating resource hog.

The two previous sections conclude that most methods studied are of similar
performance, except for L2-deviation which is usually more computationally
expensive due to its quadraticity. Only knowledge of the time and resources
available to solve a specific problem can provide guidance in choosing a method
based on its efficiency. Note that a perfect balancing method constrained by
time and resources such that it does not reach optimality may achieve worse
solutions than an inferior method reaching optimality using these same limited
resources. In a practical context, the value of a result does not solely depend on
the theoretical quality of its solution.

In the two cases studied, all concluded that L2-deviation was the balancing
method of choice for those problems due to its sensitivity to outliers. However,
this specific characteristic is not necessarily desirable at all times. For instance,
4 The dispersion constraint [10] was used for L1- and L2-deviation, whose quadratic
temporal complexity ensures domain consistency.



consider a factory with an equal number of workers and machines. Workers have
various proficiencies on the machines, and a commodity is produced when all
machines have been operated. Intuition may dictate that balancing the profi-
ciencies of worker-machine pairs will ensure an efficient production. However,
Fig. 1 shows that avoiding outliers may be counterproductive in some situa-
tions. The inverse of sensitivity to outliers, robustness against outliers, is itself
a desirable characteristic at times as shown in the previous example.


m1 m2 m3

w1 10 8 5
w2 1 10 9
w3 7 3 10


Fig. 1. Time required for each worker w to operate machine m. Perfect balance is
achieved when all workers operate the machines on which they are the least profi-
cient (red). In contrast, optimal throughtput is attained when the workloads are most
unbalanced (blue).

As shown by Monette et al. [16] and ourselves, the fact remains that L2-
deviation is a good approximation for many other methods, and could be cho-
sen in case of doubt (performance requirements permitting). The results they
presented, and which were confirmed by us in Section 4, show that no method
strictly dominates the others. Finally, there is also the possibility of hybridiza-
tion between multiple methods, such as bounding the minimum and maximum
values, and using L1-deviation in-between these bounds, for example. With
enough domain knowledge, such hybrids could present characteristics specifi-
cally tailored to a particular problem.

6 Conclusion

Oftentimes balance is attached to a problem as a side constraint or as a secondary
objective without much thought. This paper shows that balancing a problem is
not as straightforward as it seems, and highlights a few properties for some
types of balancing methods. Two problematic modeling choices are shown and
studied, after which general guidelines are proposed to prevent modelers from
succumbing to the pitfalls of balancing method selection.
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