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Abstract. The use of meta-heuristic algorithms, such as Large Neigh-

bourhood Search, Lexicographic Search, and Interactive Search, has

proven to be very successful; however, the support for the use and de-

velopment of these algorithms within constraint modelling languages

is highly limited. In this paper we introduce a machine model for the

incremental evaluation of constraint modelling languages. The model

matches the functionality of modern modelling languages, such MiniZinc,

Essence, AMPL and OPL, and its inherent incremental nature lends itself

extremely well for defining meta-heuristics algorithms.
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1 Introduction and Related Work

Constraint modelling languages, such as MiniZinc [8], Essence [5], AMPL [4]
and OPL [6], are popular tools to formulate optimisation problems. They are
relatively easy to learn, abstract from the solver’s internal mechanism, and even
allow the user to switch between different solvers. However, solving optimisation
problems has always been complex and recent developments have seen a massive
increase in the use of so called meta-heuristics. These general search algorithms
guide solvers in their exploration of the global search space by repeatedly selecting
subsets for the solver to explore. Popular examples of these algorithms are Large
Neighbourhood Search (LNS [10]), Lexicographic Search [7], and Interactive
Search [9].

Various approaches have been proposed to add the ability to define meta-
heuristics to constraint modelling languages, including:

– Search Combinators [12], which add programmable search and meta-heuristics
to solvers through an interpreter within the solver’s search mechanism.

– Solver Independent LNS [2], which allows the modelling of single level meta-
heuristics in MiniZinc and makes them available in extended solvers.

– MiniSearch [11], which provides programmable meta-heuristics through an
interpreter language within a MiniZinc model.
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Each of these solutions operates at a different stage during the solving of an
optimisation problem: Search Combinators are directly implemented within the
solver; Solver Independent LNS uses a combination of compilation and extensions
of the solver’s propagation engine; and MiniSearch repeatedly re-compiles the
model and calls the solver. Despite these differences, most meta-heuristics have
the following structure: They first search for a solution, add or remove constraints
from the problem (based on the solution), and repeat. If a meta-heuristic is to
be specified within a modelling language, then it means that the constraints
added in the second step are defined in the modelling language. Hence, we can
compile these constraints to the solver level in a generic form, so that the solver
can instantiate them for each new solution found. This is the approach taken
by Solver Independent LNS. Although this method requires the least amount
of re-computation, it does require all constraints that will be used to be in the
model and the activation logic of these constraints is limited. Alternatively, we
have to re-compile the model for each solution. This allows us to dynamically
add or remove any constraint during the solving of the optimisation problem,
but does require more computational work. In this paper we optimise the re-
compilation approach by making it incremental, i.e., only processing the new,
added constraints, without re-compiling the entire original model.

This paper introduces a machine model for the evaluation of constraint
modelling languages that is fully incremental. In this paper the process is described
in terms of MiniZinc; however, the same principles would apply to other constraint
modelling languages. After the reader is introduced to the traditional compilation
process of MiniZinc, Section 2, we describe an overview of new the evaluation
process, Section 3, and then delve into important details regarding dependency
tracking, Section 4, and common sub-expression elimination, Section 5. The
choices explained in these sections will allow for the incremental evaluation of
MiniZinc through the use of backtracking. The technical details of which are
explained in Section 6.

2 Background

A MiniZinc model is combined with data to form a MiniZinc instance. Generally,
solvers cannot solve MiniZinc instances directly. Thus, an equivalent flat constraint
model, referred to as FlatZinc, is generated containing only constraints supported
by the solver. A constraint model is considered flat when all high level constructs
(e.g., loops, nested expressions, predicates, functions, enum-types) have been
eliminated. The full process is depicted in Figure 1.

A common misconception is that MiniZinc is a simple rewrite system that
rewrites constraints until it reaches flat state with constraint accepted by the
solver; however, MiniZinc has to take special care to produce a constraint model
that will perform well in the solver. For example, all expressions that do not
contain decision variables are evaluated immediately, the results of an identical
expressions are reused, and the domains of decisions variables are tightened when
possible.
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Fig. 1: A diagram representing the process that a MiniZinc instance undergoes to arrive

at a solution.

3 Overview of the Machine Model

Figure 2 shows the newly proposed process for solving a MiniZinc instance. In
this approach the compilation process from MiniZinc to FlatZinc is split into two
stages: (1) the compilation of the MiniZinc instance into a bytecode program,
and (2) the evaluation of the bytecode program to the solver dependant FlatZinc.
Although the compilation to a bytecode program brings its own complications,
we will focus on the second step and assume that there exists a compiler to
produce a bytecode program.
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Fig. 2: A diagram representing the newly proposed process that a MiniZinc instance

would undergo to arrive at a solution.
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We define incumbent FlatZinc as a list of calls, such as var int: i1 = count(X, y);.
Each call consists of a domain, an identifier, a function identifier, and a list of
arguments. For simplicity, we will assume that arguments can only be numbers,
identifiers, or lists of numbers and/or identifiers. The evaluation of a bytecode
program can be seen as a rewriting system. In each rewriting step one call in the
incumbent FlatZinc is evaluated. If the call is supported by the target solver,
then it will remain in the model; otherwise, the call will be rewritten into (i.e.,
replaced by) a set of new calls according to the given bytecode. In the replacement
there must be a call that is semantically equivalent and uses the identifier of the
original call.

Take for example the following MiniZinc code which constrains |a − b| = 2
using a custom predicate:

1 predicate two_apart(var int: i, var int: j) =
2 i + 2 = j \/ j + 2 = i;
3

4 var 1..5: a;
5 var 3..6: b;
6

7 constraint two_apart(a, b);

The initial incumbent FlatZinc for this instance would include the calls:

1 var int: a = mk_var(1, 5);
2 var int: b = mk_var(3, 6);
3 true: i1 = two_apart(a, b);

where mk_var is the identifier of a solver built-in function used to create a fresh
variable. Note that the domain of these calls is tightened during the optimisation
of the incumbent FlatZinc. Evaluation will not rewrite these two calls. The call
to two_apart will be rewritten by evaluating the bytecode generated for the
two_apart predicate. This will replace the call by two linear constraint calls and
a call for the disjunction between them, in accordance to the predicate definition
given in the MiniZinc code. This results in:

1 var int: a = mk_var(1 ,5);
2 var int: b = mk_var(3, 6);
3 true: i1 = bool_or(i2, i3);
4 var bool: i2 = int_plus(a, 2, b);
5 var bool: i3 = int_plus(b, 2, a);

In this paper, we will not go into the details of how exactly the bytecode is
structured or evaluated. For the rest of the paper, we will simply assume that
any call to a function (or predicate) that has a definition in MiniZinc can be
rewritten, while any other call that does not have such a definition is a solver
built-in.

Note that the output of any rewriting step results in valid incumbent Flat-
Zinc. Some of the calls may already be solver built-ins, while others still require
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evaluation. At any point we can therefore propagate any call for which an
internal propagator is available. This can improve the incumbent FlatZinc by for
example, fixing some variables to constants, and constraints becoming implied
(and therefore removed from the incumbent FlatZinc) or simplified. Not all calls
in the incumbent FlatZinc will have a propagator available; however, the partial
propagation of a constraint model is valid for the full model. Note that the
internal constraint solver we use for this optimisation step can only propagate
constraints, it does not perform any search.

An important design decision is when to perform this partial constraint
propagation. While we plan to experiment with different approaches, a general
rule could be to propagate simple constraints during the evaluation, as they could
already provide information that would simplify the evaluation of future calls.
More complex constraints may be delayed until the end of the evaluation process,
or even left for the solver.

4 Dependency Tracking

During the evaluation of a bytecode program, the interpreter might evaluate
calls that prove to be unnecessary later in the process due to propagation or to
the order in which the calls are evaluated. Take for example the following Mini-
Zinc code which constructs an array containing the results of divisions between
different variables and forces the second element to be 3:

1 array[1..4] of var 0..10: x;
2 constraint [ x[i] div x[i+1] | i in 1..3 ][2] == 3;

Assuming the compiler generates a naive bytecode program, it will evaluate
the functional definition for each division and then use an element constraint
to force the second division to be equal to 3. Note that this also could have
happened if value 2 was yet unknown, but is fixed through propagation. The
incumbent flatzinc would look like this:

1 var int: x1 = mk_var(0, 10);
2 var int: x2 = mk_var(0, 10);
3 var int: x3 = mk_var(0, 10);
4 var int: x4 = mk_var(0, 10);
5 var int: i1 = int_div(x1, x2);
6 var int: i2 = int_div(x2, x3);
7 var int: i3 = int_div(x3, x4);
8 var int: i4 = element([i1,i2,i3], 2);
9 true: i5 = int_eq(i4, 3);

Simplification of the element call results in the unification if i4 and i2. At
this point the calls i1 and i3 are no longer necessary, and propagating them
could waste valuable time.



6 J.J. Dekker et al.

To eliminate these unused calls, we need to keep track of the liveness of each
identifier: in general, an identifier is live if it is used as an argument to another
call. A common way to track liveness is by using reference counting, which keeps
track of the number of times an identifier is used as an argument to other calls.
Once this number drops to zero, the identifier is known to be dead and its call
can be removed from the incumbent FlatZinc. In MiniZinc, there are two special
cases to consider. An identifier that is required for the output of the model should
never be removed. Likewise, an identifier whose domain is binding, i.e., actually
constraining the result of its call, must also not be removed.

While this scheme, used in the current MiniZinc compiler, looks enticing for
its simplicity, basic reference counting cannot keep track of the dependencies in
complex expressions potentially resulting in large parts of the FlatZinc not being
detected as dead.

Consider for example a version of the incumbent FlatZinc above where the
div operator is no longer simply rewritten to int_div, but to a redefinition
which ensures the divisor is not zero:

1 function int: 'div'(int: x, int: y) = let {
2 constraint y != 0;
3 var int: yy = if y=0 then 1 else y endif;
4 var int: r;
5 constraint int_div(x, yy, r);
6 } in r;

Using this definition every division would result in multiple calls; for example,
the first division resulting in variable i1, on line 5, would become:

1 var int: i1 = mk_var(0, 10);
2 true: i11 = int_ne(x2, 0);
3 var int: i12 = mk_var(1, 10);
4 var bool: i13 = int_eq(i12, 1);
5 var bool: i14 = int_eq(i12, x2);
6 true: i16 = bool_clause([i13, i11], []); % (not i11) -> i13
7 true: i15 = bool_clause([i14], [i11]); % i11 -> i14
8 true: i17 = int_div(x1, i12, i1);

The division no longer functionally defines the identifier i1. When i1 becomes
unused its count does not drop to zero. It is still used in the int_div call. Even
if one applies special cases for identifiers where a relational constraint can be
rewritten into a functional form, it would still not fully solve the problem. For
example i12, would no longer be necessary, but because its value is defined by
the combination of two separate calls it is impossible to determine that it can be
removed using reference counting alone.

To solve this problem we introduce the concept of dependant calls. For every
call we keep track of all other calls that are created to help define it. The evaluation
of a call will bind all calls generated to the call with the same identifier. This
means that the evaluation of a call will now no longer return a list of calls, but a
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tree of dependent calls. The incumbent FlatZinc will thus be represented as a list
of these trees, which we call a hedge. The hedge structure, shown by indentation,
of the previous example would look like this:

1 var int: i1 = mk_var(0, 10);
2 true: i11 = int_ne(x2, 0);
3 var int: i12 = mk_var(1, 10);
4 var bool: i13 = int_eq(i12, 1);
5 var bool: i14 = int_eq(i12, x2);
6 true: i16 = bool_clause([i13, i11], []);
7 true: i15 = bool_clause([i14], [i11]);
8 true: i17 = int_div(x1, i12, i1);

The structure of the hedge can be used to increase the effectiveness of the
reference counting. Instead of counting all occurrences of an identifier, we only
count the occurrences within calls that do not occur within its tree of dependant
calls. We also specify that all dependant calls have their reference count increased
by 1. If the reference count of a call reaches zero, then it is removed and all its
dependants have their reference count decreased by 1. If their reference count
also reaches zero, then the process is repeated recursively; however, if they have
a positive reference count, then the call is promoted upwards in the tree. Using
these reference counting rules, all calls in the example can be removed once the
reference count of i1 reaches zero.

5 Common Sub-Expression Elimination

The main goal for the evaluation of the bytecode program is to create Flat-
Zinc that a solver is able to solve as fast as possible. An issue that can cause
unnecessary work for a solver is the duplication of identical constraints in the
FlatZinc. Not only does this result in extra work for the solver propagating the
duplicates, it can lead to much larger search trees if the solver cannot detect
the equality between two duplicated expressions. To solve this problem modern
constraint modelling languages use common sub-expression elimination (CSE) [1].
In a MiniZinc model constraints express relationships between variables. If the
same, or an equivalent, constraint is placed multiple times on the same variables,
it expresses the same relationship multiple times. The result of the evaluation of
a constraint can thus be reused.

During the evaluation of a bytecode program CSE can be used for the
evaluation of all calls, except for a selected set of functions which do not describe
a relationship, but are instead operational calls to the solver or interpreter. An
example of such a function is mk_var, which requests the creation of a fresh
variable. For the evaluation of all other calls CSE would function as a lookup
before the evaluation of the call. If a call with the same function identifier
and arguments was previously evaluated, then we can reuse the stored result;
otherwise, the call is evaluated normally, and its information and result are stored
for future lookup operations.
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To increase the efficiency of CSE during evaluation it should be aware of
reifications. A reified constraint associates a truth value with a constraint. Take
for example the call int_le(a, b) and its reification int_le_reif(a, b, r),
which constrain a ≤ b and r ⇐⇒ (a ≤ b) respectively, during the evaluation of a
bytecode program containing both calls, only the first constraint needs to be added
to the incumbent FlatZinc and, afterwards, r is known to be true. Reification
aware CSE has high potential in removing unnecessary reified constraints, as
they add both extra decision variables and constraints.

In our new bytecode interpreter we consider not just constraints and their
reified versions, as the current MiniZinc compiler does, but also half-reified
versions [3], which imply a constraint, and their exact negations. We thus consider
the following contexts for every function:

– Root context (e. g., int_le(a, b))
– Negated root context (e. g., int_gt(a, b) in case of int_le(a, b))
– Reified context (e. g., int_le_reif(a, b, r) in case of int_le(a, b))
– Negated reified context (e. g., int_gt_reif(a, b, r) in case of int_le(a, b))
– Half-reified context (e. g., int_le_imp(a, b, r) in case of int_le(a, b))
– Negated half-reified context (e. g., int_gt_imp(a, b, r) in case of int_le(a, b))

To manage our CSE structure, an ordering of the context can now be es-
tablished where root context > reified context > half-reified context. Only the
result of the highest context needs to be stored for our lookup operation, which
includes the context used. For root context the result is a fixed Boolean value
(true or false), while for reifications the result is the reified variable (r). Whenever
a lookup operation finds a match it compares the current evaluation context to
the context in the result. If the context level in the result is equal or higher, then
the previous result can be used and if only one of the contexts of the result and
the evaluating context is negated, then the result that was found will need to be
negated. Otherwise, the evaluation proceeds as normal and the previous result
stored in the CSE structure is replaced. Because of our dependency tracking,
explained in Section 4, the old result and all its dependencies can be correctly
removed. This ensures that the order in which the bytecode is evaluated does
not effect the resulting FlatZinc.

When bytecode programs get bigger, the amount of calls that will be evaluated
rises quickly. It is therefore important to consider the cost of CSE. The memory
used and time taken for processing a CSE request can be limited to a maximum
size or its functionality can be limited to a set of functions.

6 Backtracking Interpreter

We can provide incremental functionality during the evaluation process by adding
backtracking functionality. At each point during the evaluation, we allow the
user to (1) push a choice point, marking the current moment in the evaluation;
(2) add a call, allowing the creation of new constraints and variables; and (3) pop
a choice point, returning the state to the previous choice point and removing
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this one. Due to the nature of our evaluation process, the ability to add a call
to the incumbent FlatZinc is trivial. The incumbent FlatZinc can be extended
with the new call (at the top level of the hedge) at any point in time and further
evaluation can be triggered. The use of choice points will require the use of
trailing: Every change made to the incumbent FlatZinc after a choice point is
pushed is recorded; When a choice point is popped, the changes that have been
recorded since the previous choice point are reverted.

Changes to incumbent FlatZinc can be either the addition of a call, the
removal of a call, or the change in the domain of a call. Tracking the addition of
calls can be done by storing the position of the latest (top level) call added to the
incumbent FlatZinc at every choice point. If the choice point is popped, then all
calls added after the stored position are removed. The propagation to optimise
the incumbent FlatZinc could change the domain of calls. If the propagation
changes a call that existed before the last choice point, then the original domain
has to be recorded. This domain will be reverted when the choice point is popped.
(Note that as the same domain can change multiple times, either the recording
structure has to account for this, or the recorded changes have to be reverted
in order). Finally, propagation and CSE can remove calls from the incumbent
FlatZinc. This happens for two reasons: either a stronger constraint was added
eliminating the need for the call or, a call was added which is more powerful.
For example, a reification gets added and replaces the need for a half-reification.
In the former case, the call and its position are added to a list of removed calls.
When we revert to the previous choice point it is added back. In the latter case,
a call is not only removed but also replaced. In this case the removed call and its
position are stored and its name will be an alias to the new call. Any references
to the old call will therefore use the definition of the call which replaces it. If the
choice point is popped, then the call is restored to the position of the alias.

To take full advantage of the incremental evaluation of a bytecode program
the solver should be implemented in a similarly incremental fashion. This would
avoid the repeated startup costs of solvers and would allow solvers to keep the
data learned during its execution. An incremental interface for a solver can be
supported at multiple levels. A full incremental solver would be required to
allow the addition of constraint and variables (after solving has started) and the
reverting to an earlier state; however, even partial support for these methods
might avoid the need to restart the solver in some cases.

7 Conclusion and Outlook

In this paper we have shown a new machine model for the evaluation of MiniZinc
that is fully incremental. The incremental nature of the evaluation allows the
user to define meta-heuristics without any restarts during the evaluation of the
program. An implementation of the machine model presented in this paper is
currently under development. We hope to distribute a full compilation suite
according to this machine model within the MiniZinc bundle in the future.
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