
Exploration via Random Walks in CDCL SAT Solving
amid Conflict Depression

Md Solimul Chowdhury, Martin Müller, and Jia-Huai You

Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada.

{mdsolimu, mmueller, jyou}@ualberta.ca

Abstract. The efficiency of Conflict Driven Clause Learning (CDCL) SAT solv-
ing depends crucially on finding conflicts at a fast rate. The development of
branching heuristics such as VSIDS, CHB and LRB reflects this goal. Here we
take a closer look at the way in which conflicts are generated over the course of
a CDCL SAT search. Our case study with the VSIDS branching heuristic shows
that conflicts are typically generated in short bursts, followed by a conflict depres-
sion phase when the search fails to generate any conflicts in a span of decisions.
The lack of conflict indicates the ineffectiveness of the variables that are cur-
rently ranked highest by the branching heuristic for conflict generation. Based on
this analysis, we propose an exploration strategy with the goal of escaping from
conflict depressions more quickly. To probe the future search space, our CDCL
SAT solving algorithm expSAT randomly samples variable selection sequences
in order to learn an updated heuristic from the generated conflicts. The branching
heuristic deployed in expSAT combines these updates with the standard VSIDS
activity scores. An empirical evaluation demonstrates the performance gains with
the expSAT approach.

1 Introduction

Modern CDCL SAT solvers have become the enabling technology for many real-world
domains, such as hardware design verification [6], planning [19], and encryption [7].
The key decision-making step in a CDCL SAT solver is selecting a variable from the
current set of unassigned variables using a branching heuristic, before making a boolean
assignment to it. Variable selection has a dramatic effect on search efficiency. Popular
branching heuristics include variable state independent decaying sum (VSIDS) [14]
and its variants, learning rate based (LRB) [11], and conflict history based (CHB) [10].
These heuristics reward the variables taking place in recent conflicts. The intuition is
that assignments of these variables are likely to generate further conflicts leading to
learned clauses and thus pruning the search space.

The metric based on global learning rate (GLR) [12] measures the number of con-
flicts obtained per branching decision. In CDCL SAT, a single decision may generate
multiple conflicts. State-of-the-art branching heuristics, such as, LRB, VSIDS or CHB
have average GLR values of about 0.5 [12], i.e., average one conflict per two decisions.

In this work, we first report a study on the phenomenon of conflicts generation dur-
ing CDCL search. We find that there are clear non-random patterns of bursts of conflicts

2 Md Solimul Chowdhury, Martin Müller, and Jia-Huai You

followed by longer phases of conflict depression (CD). To correct the course of such a
search, we propose to use exploration to combat conflict depression. We therefore pro-
pose an extension of SAT solving, called expSAT, which applies random walks in the
context of CDCL SAT solving. In a conflict depression phase, random walks help iden-
tify more promising variables for branching. As a contrast, while exploration explores
future search states, VSIDS relies on conflicts generated from the past search states. We
report the following findings.

– By an empirical study of conflict depression using one of the strongest purely
VSIDS-based solver, glucoseLCM1, on recent SAT competition benchmarks, we
show that CD phases occur at a high rate and often with long average duration.

– We formulate expSAT, an exploration-driven extension of VSIDS-based SAT solvers.
We show a scheme of setting the exploration parameters dynamically at runtime to
control when to perform exploration and how much exploration to perform.

– We perform an empirical evaluation of expSAT by extending two leading solvers
glucoseLCM and Maple_CM2, called expGLCM and expM_CM. On the main track
benchmarks of SAT Competition-2018 (abbreviated as SAT-2018), expGLCM solves
9 more instances (than its baseline) and expM_CM solves 2 more; both achieve a
lower PAR-2 score.3 On 40 hard instances from SHA-1 preimage attack crypto-
graphic benchmarks, expGLCM solves 3, as opposed to 2 by glucoseLCM, and
reduces the average run-time by half. In comparison, the winner of SAT-2018,
MapleLCMDistChronoBT solves only 1 instance.

2 Preliminaries

We assume familiarity with CDCL SAT solving [2]. We briefly review some concepts.
The VSIDS Heuristic: VSIDS [14] is a popular family of dynamic branching

heuristics. We focus on exponential VSIDS as used in glucoseLCM. VSIDS maintains
an activity score for each variable in a given SAT formula. It increases the activity score
of each variable that is involved in conflict resolution by a variable bumping factor gz ,
where g > 1 is a constant and z is the count of the number of conflicts in the search so
far. This strongly favors variables that participated in the most recent conflicts.

The Literal Block Distance (LBD) Score and Glue Clauses: The LBD score [1]
of a learned clause c is the number of distinct decision levels in c. If LBD(c)=n, then c
contains n propagation blocks, where each block has been propagated within the same
branching decision. Variables within one block are considered to be closely related, and
learned clauses with lower LBD scores are likely of higher quality. A glue clause c is
one with LBD(c) = 2.

Global Learning Rate (GLR): Suppose a CDCL solver takes d decisions to solve
a given SAT instance F and generates q conflicts for these d decisions. The GLR of the

1 glucose 4.2.1, which implements the learned clause minimization (LCM) technique [13] on
top of glucose 4.1.

2 Source: http://sat2018.forsyte.tuwien.ac.at/solvers/main_and_glucose_hack/
3 Defined as the sum of all run-times for solved instances + 2 ∗ timeout for unsolved instances;

lowest score wins.

Exploration via Random Walks in CDCL SAT Solving amid Conflict Depression 3

solver for F is defined as q
d . GLR measures the overall tendency of a solver for conflict

generation for a given problem.
Test Environment: Our first baseline is glucoseLCM, one of the best CDCL SAT

solvers that use VSIDS exclusively as a branching heuristic. Our second baseline is
Maple_CM, the second runner up of the main track of SAT-2018, which uses VSIDS
and LRB.

All experiments presented in this paper were run on a workstation with 48GB RAM
and a processor clock speed of 2.93GHz. Two test sets were used in experiments.

(a) Test Set 1 contains 400 instances from the main track of SAT-2018 and is run
with a time limit of 5k seconds per instance.

(b) Test Set 2 consists of 40 hard instances from SHA-1 preimage attack crypto-
graphic benchmark, which are generated with the instance generator described in [16].
This benchmark is known to be challenging for current SAT solvers. The difficulty of
instances is regulated by three parameters, rounds, hash-bits, and message-bits. We use
the following value ranges of these parameters: rounds between 23-30, hash-bits be-
tween 66-97, and message-bits 0. We set time limit to be 36k seconds per instance.

3 Conflict Depression

Consider a run of a CDCL SAT solver S which makes a total of d decisions. In each
decision, a variable is selected according to a branching heuristic. Each decision i (0 <
i ≤ d) leads to some number ci ≥ 0 of conflicts. We can represent the conflict history of
decisions by a sequence {c1, c2, . . . , cd}. We define a conflict depression (CD) phase as
a sequence of one or more consecutive decisions with no conflict. We further define the
length of a CD phase as the number of decisions in it. For example, the conflict history
of decisions (1, 0, 0, 0, 0, 4, 2, 1, 0, 1, 0, 0), where a number represents the number of
conflicts at that decision, contains 3 CD phases: one starting at decision c2 with length
4, one starting at decision c9 with length 1, and one at the end with length 2.

Decision Rates, CD Phase Rates, and FDC: Suppose S takes a of total d decisions,
encounters u CD phases, and gives r restarts. We define decision rate (DR) as d/r and
CD phase rate (CDR) as u/r. We also define the fraction of decisions with conflicts
(FDC) as a measure related to, but different from, the global learning rate (GLR): FDC
is the fraction of decisions which produce at least one conflict. This measure counts
decisions with conflicts, not conflicts, which is different since some decisions cause
multiple conflicts.

3.1 Conflict Depression of VSIDS in glucoseLCM

In this section, we study conflict depression empirically, using VSIDS as a representa-
tive CDCL branching heuristic, and glucoseLCM as the CDCL SAT solver. We collect
the statistics for each search of an instance on DR, CDR, Average CD phase length,
GLR, and FDC.

CDR and average CD Phase Length: The left plot of Figure 1 shows the decision
rates (DR), CD phase rate (CDR) and average CD phase length (in log scale) for in-
stances in Test Set 1, where the instances are sorted by average CD phase length. We

4 Md Solimul Chowdhury, Martin Müller, and Jia-Huai You

Fig. 1. Conflict Depression plots for Test Set 1 with glucoseLCM

observe that the average CD phase length is short for most instances, which, however,
consists of multiple decisions (blue line, left plot). Furthermore, irrespective to their av-
erage CD phase length, for all-most all of the instances CD phases (orange line) occur
at a high rate w.r.t. the decision rates (yellow line).

The histogram on the right side of Figure 1 shows the distribution of average length
of CD phases. This average ranges from 2.35 to 525.61. Total 125 instances have very
short length (at most 3, leftmost bin). The distribution is heavy tailed, with over 30
instances with average length greater than 25 (rightmost bin).

Overall, the data indicates that for glucoseLCM on Test Set 1, conflict depressions
occur frequently and often last over multiple decisions (high average CD phase length),
which is a serious problem for search efficiency.

GLR and FDC: In Table 1, column C shows that the average GLR values for all
three types of problems are close to 0.5, so the number of conflicts is about half the
number of decisions. In contrast, the FDC values in column D are much lower, averag-
ing 0.2506 over all instances. Therefore, about 75% of all decisions do not produce any
conflict!

Type (A) #Instances (B) GLR (C) FDC (D)
Satisfiable 95 0.4915 0.2562
Unsatisfiable 97 0.4718 0.2543
Unsolved 208 0.5060 0.2543
All 400 0.4943 0.2506

Table 1. Statistics for Test Set 1 on GLR and FDC with glucoseLCM

To summarize, our analysis shows that the typical search behavior alternates be-
tween high-conflict bursts and longer conflict depression phases. We conjecture that the
beginning of a CD phase corresponds to a new region in the search space where VSIDS
scores are not a good predictor of a variable’s future performance. In such a phase,

Exploration via Random Walks in CDCL SAT Solving amid Conflict Depression 5

VSIDS fails to generate any conflicts. No conflict means no learned clauses, and the
solver only performs truth value propagations.

4 The expSAT algorithm

During a CD phase, VSIDS is ineffective. Is it possible to correct the course of the
search by identifying promising variables that are currently under-ranked by VSIDS?
We have formulated a solver framework named expSAT , which performs random explo-
rations that probe into the future search space. The goal is to find branching variables
that are likely to lead to good conflicts from which important clauses can be learned.

Let F be a CNF SAT formula. In addition to F , expSAT also accepts four ex-
ploration parameters nW, lW, pexp and ω, where 1 ≤ nW, lW ≤ uV ars(F), 0 <
pexp, ω ≤ 1, with uV ars(F) be the set of unassigned variables at any given state of the
search. These parameters control the exploration aspects of expSAT .

Given a CDCL SAT solver, expSAT modifies it as follows:

– Before each branching decision, if a substantially large CD phase4 is detected then
with probability pexp, expSAT performs an exploration episode, consisting of a
fixed number nW of random walks. Each walk consists of a limited number of
random steps. Each such step consists of the uniform random selection of a cur-
rently unassigned step variable and assigning a boolean value to it using a standard
CDCL polarity heuristic, followed by unit propagation (UP). A walk terminates ei-
ther when a conflict occurs during UP, or after a fixed number lW of random steps
have been taken. Figure 2 illustrates an exploration episode amid a substantially
large CD phase.

– Each variable v that participates in any of the nW walks receives an exploration
score expScore, which is the average of the walk-scores of v. The walk-score
ws(v) for v is: ωd

LBD(c) , if the walk in which v participates ends with a conflict,
and 0 otherwise. d is the distance between the step for v and the step at which the
conflict has occurred: If v was assigned at some step j during the current walk, and
the conflict occurred after step j′ ≥ j, then d = j′− j. 0 < ω ≤ 1 is the decay fac-
tor and LBD(c) is the LBD score of the learned clause c, which is derived from the
conflict that terminates the walk. We assign credit to all the step variables in a walk
that ends with a conflict and give higher credit to variables closer to the conflict.
This approach is patterned on reward decay in reinforcement learning [22].

– The new branching heuristic adds VSIDS score and expScore for each unassigned
variable. An unassigned variable with maximum combined score is selected for
branching.

– All other components remain the same as in the underlying CDCL SAT solver.

4 Given a run of a solver on a given SAT instance, let R be the mea-
sure #decisions_without_conflicts

#decisions_with_conflicts
, where #decisions_with_conflicts (resp. #deci-

sions_without_conflicts) are the number of decisions with conflicts (resp. without conflicts)
encountered by the search so far. R + 1 is the average number of decisions taken until one
generated a conflict. In expSAT , we call a CD phase substantial, if its length is greater than R.

6 Md Solimul Chowdhury, Martin Müller, and Jia-Huai You

Fig. 2. The 20 adjacent cells denote 20 consecutive decisions starting from the dth decision, with
d > 0, where a green cell denotes a decision with conflicts and a black cell denotes a decision
without conflicts. Say that amid a CD phase, just before taking the (d + 9)th decision, expSAT
performs an exploration episode via 3 random walks each limited to 3 steps . The second walk
ends after 2 steps, due to a conflict. A triplet (v, i, j) represents that the variable v is randomly
chosen at the jth step of the ith walk.

Example: Using the three random walks of Fig. 2, we show how to compute ws and
expScore of variables. Only the second walk produces a conflict at the second step. Let
c be the derived clause from this conflict, with LBD(c) = m.

The walk and exploration scores for all variables participating in the first and third
random walk are 0. The variables x and y which participate in the second walk receive
non-zero walk and exploration scores:ws(y) = ω2−2

m = ω0

m = 1
m andws(x) = ω2−1

m =
ω1

m . Since y only appears in this walk, but x appears in two walks, the exploration scores
of y and x are 1

m , and (ω
m)/2, respectively.

The Parameter Adaptation Algorithm: A parameter setting that is effective for
one instance may not be effective for another. We use an adaptive algorithm para-
mAdapt to dynamically control when to trigger exploration episodes, and how much
exploration to perform in an exploration episode. The three exploration parameters
pexp, nW , and lW are adapted between CDCL restarts based on the search behavior.

A parameter setting is a triple P = (pexp, nW, lW), which is updated at the begin-
ning of each restart by paramAdapt by comparing the exploration performance of the
two most recent search periods, the period between the latest two restarts and the period
before it.

The search in expSAT starts with a default value P def of P . paramAdapt keeps
track of the following statistics about all exploration steps within a period: the number
of random steps rSteps, the number of conflicts c, the number of glue-clauses gc, the
mean LBD value, lbd, of the learned clauses.

With fixed weights w1 > w2 > w3, an exploration performance metric (EPM) is
defined as w1×gc+w2×c

rSteps + w3 ∗ 1
lbd

This performance metric rewards finding glue clauses (most important), finding any
conflict (very important), and learning clauses with low LBD score (important).

At each restart, the algorithm computes a new EPM σnew and compares (the com-
parison starts after the second restart) it with the prior one σold, and update the param-
eter setting P old just used to get a new setting Pnew.

Exploration via Random Walks in CDCL SAT Solving amid Conflict Depression 7

- If σnew < σold, the performance of exploration is worse than before. First, Pnew is
set to the old P old, then we perform an increment: Randomly select a parameter p ∈ P
and increase its value by a predefined stepsize.
- If σnew = σold, we only perform the increment, no reset.
- If σnew > σold, then exploration is working better than before. We do not change
P old in this case.

The values of a parameter are bounded by a range. Whenever a value leaves its
range, it is reset to its default value.

5 Experimental Evaluation

We have implemented expSAT in two systems, glucoseLCM and Maple_CM, and call
the resulting solvers expGLCM and expM_CM, respectively.

Maple_CM uses a hybrid of two heuristics, LRB and VSIDS. Based on the activation
of these heuristics, a run in Maple_CM is divided into two stages: In stage 1, which
lasts for the first 2500 seconds of a run, it uses a combination of these two heuristics.
Stage 2 starts after 2500 seconds, where it uses VSIDS exclusively. In expM_CM, we
apply the expSAT approach only at stage 2.

We compare the performance of these systems on both Test Sets as described in
Preliminaries. To set the values of the exploration parameters, we took one instance
from each benchmark of SAT-2018, which gives us a small subset of instances. We did
a small scale grid search with glucoseLCM applying a small range of parameter values
to set the value of the parameters used in the experiments (shown in Appendix A).

Solver SAT UNSAT Combined Average Solve Time PAR2 - Score
glucoseLCM 95 97 192 1018.86 2275
expGLCM 105 (+10) 96 (-1) 201 (+9) 894.06 2169
Maple_CM 128 100 228 744.49 1889
expM_CM 130 (+2) 100 230 (+2) 767.32 1876

Table 2. Comparison of expGLCM and expM_CM against their baselines for Test Set 1.

Results on Test Set 1 Table 2 shows the Test Set 1 results for glucoseLCM, expGLCM,
Maple_CM and expM_CM.

– expGLCM solves 9 more instances than its baseline, with a strong performance
over SAT instances (solves 10 more) and slightly weaker performance over UNSAT
instances (solves 1 less).

– Maple_CM and expM_CM solves 228 and 230 instances, respectively. Among thse
solved instances, 210 instances are solved in stage 1, where runs in both solver are
identical (expM_CM does not perform exploration). In stage 2, expM_CM solves 2
additional instances (both SAT).

Overall, this experiment pointed out strength of the expSAT approach in solving SAT
instances from the latest SAT competition.
Results on Test Set 2 We evaluate the performance of these two extended solvers. We
set time limit to be 36k seconds per instance.

8 Md Solimul Chowdhury, Martin Müller, and Jia-Huai You

To put the hardness of these cryptographic instances in perspective, we performed
experiments with the winner of the main track of SAT-2018, MapleLCMDistChronoBT.
It solves only 1 instance out of these 40 instances.

expGLCM solves 3 satisfiable instances with an average time of 6680s, and glu-
coseLCM solves 2 satisfiable instances with an average time of 12277s. For Maple_CM
and expM_CM, neither system solves any of the 40 hard instances within the 36000
seconds time limit. Clearly, in this experiment, expGLCM is the winner.

6 Discussion

System avg. GLR avg. aLBD avg. CD Phase Length
glucoseLCM 0.49 17.72 14.03
expGLCM 0.49 17.59 13.90

Table 3. Comparison of glucoseLCM and expGLCM over performance metrics

GLR, average LBD and CD Phase Length In [12], the authors observed that bet-
ter branching heuristics have higher GLR and average LBD (aLBD), on average. First
two columns of Table 3 compares the average GLR and average aLBD achieved by
glucoseLCM and expGLCM, respectively, over the 400 instances of Test Set 1. While
average GLR value is equal in both of the systems, exploration in expGLCM (system
with better heuristic) helps the solver to achieve slightly lower average aLBD values.
Hence, our experimental data are largely consistent with the observation in [12].

Compared to its baseline, expGLCM achieve slightly lower CD phase length, on
average (3rd Column of Table 3). Exploration in expGLCM helps the system to flee
from the CD phases expeditiously than its baseline, on average.

A: Type B: #Instances C: Exploration Average D: Search Average
C1: GLRE C2: aLBDE D1: GLR D2: aLBD

Solved 201 0.020 11.74 0.47 13.46
Unsolved 199 0.025 17.24 0.51 21.75

Table 4. Comparison of GLR and aLBD during exploration and search between Solved and
Unsolved instances

Exploration Performance vs Search Performance For a given run with an expSAT
solver, we define exploration GLR (GLRE) as the number of discovered conflicts per
random step (taken during exploration) and exploration aLBD (aLBDE) as the average
LBD of the derived clauses from the conflicts (discovered during exploration). Table 4
compares the average value of exploration GLR and aLBD (Column C) with average
search GLR and aLBD (Column D) for the solved and unsolved instances of Test Set 1
with expGLCM. For the solved instances, on average, both search and exploration find
conflicts at slightly lower rate than unsolved instances (Compare C1 and D1, for solved
and unsolved). However, for solved instances, for both exploration and search, higher
quality clauses are derived from the discovered/generated conflicts (Compare C2 and
D2, for solved and unsolved).

Hence, GLR and aLBD of exploration correlates well with the GLR and aLBD of
search.

Exploration via Random Walks in CDCL SAT Solving amid Conflict Depression 9

7 Related Work

Randomized exploration in SAT is used in local search methods such as GSAT [21] and
WalkSAT [20]. The Satz algorithm [9] heuristically selects a variable x, then performs
two separate unit propagations with x and (¬x) respectively, in order to evaluate the
potential of x. Modern CDCL SAT solvers include exploration components such as a
small amount of random variable selection [5]. Exploration can make a search process
more robust by allowing an escape from early mistakes caused by inaccurate heuristics
[23]. Examples of recently popular exploration methods in search are Monte Carlo Tree
Search (MCTS) [3], and the random walk techniques used in both classical [15] and
motion planning [8]. A SAT solver based on MCTS is proposed in [18]. These works
have motivated our work on random exploration in CDCL SAT.

In [4], we reported experimental results for a preliminary version of the expSAT
approach, where exploration are triggered up-to a fixed height of the search tree, with
probability pexp. During the search, the exploration parameters are not adapted. Here,
we trigger exploration amid the onset of substantial CD phases with probability pexp,
where the exploration parameters are adapted in between restarts based on the metric
EPM.

8 Conclusions and Future Work

In this paper, we showed that VSIDS can fall into the pathological states of conflict
depressions due to the ineffectiveness of its heuristic estimation. This observation led
us to develop an exploration guided CDCL SAT solver framework expSAT , which per-
forms random exploration amid substantial conflict depression phases. Our empirical
evaluation of the expSAT approach shows strong performance gain for SAT instances.

Interesting research avenues to explore further include: (a) Integrate expSAT to LRB
and CHB based systems. (b) Study exploration as in expSAT to guide polarity selection,
e.g., by extending the phase-saving [17] heuristic. (c) Develop machine learning meth-
ods to predict the onset of a long CD phase. (d) Better understand (i) the performance
gap between SAT and UNSAT instances with the expSAT approach. (ii) the relationship
between properties of conflict depressions such as length and rate on one side, and the
performance of a solver on the other side. (e) Identify characteristics of SAT domains
which influence the effectiveness of exploration.

Appendix A: Parameter values used in Experiments

Description Parameters Value
(1) Default value of Exploration Parameters P def (0.02, 5, 5)

(2) Weights for Computing σ (w1, w2, w3) (40, 10, 3)

(3) Step size for parameters (snW , slW , spexp) (1, 1, 0.01,)

(4) Range for number of walks per episode [lnW , unW] [1, 20]

(5) Range for length of walk [llW , ulW] [1, 10]

(6) Range for exploration trigger probability [lpexp , upexp] [0.02, 0.6]

(7) Exponential Decay Factor ω 0.9

10 Md Solimul Chowdhury, Martin Müller, and Jia-Huai You

References

1. Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT
solvers. In IJCAI 2009, Proceedings of the 21st International Joint Conference on Artifi-
cial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages 399–404, 2009.

2. A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability: Volume 185
Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, The Nether-
lands, The Netherlands, 2009.

3. Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana, Spyridon Samothrakis, and
Simon Colton. A survey of monte carlo tree search methods. IEEE Trans. Comput. Intellig.
and AI in Games, 4(1):1–43, 2012.

4. Md. Solimul Chowdhury, Martin Müller, and Jia-Huai You. Preliminary results on
exploration-driven satisfiability solving. In Proceedings of the AAAI 2018, pages 8069–8070,
2018.

5. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Theory and Applications
of Satisfiability Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure,
Italy, May 5-8, 2003 Selected Revised Papers, pages 502–518, 2003.

6. Aarti Gupta, Malay K. Ganai, and Chao Wang. SAT-based verification methods and appli-
cations in hardware verification. In Proceedings of SFM 2006, pages 108–143.

7. Frédéric Lafitte, Jorge Nakahara Jr., and Dirk Van Heule. Applications of SAT solvers in
cryptanalysis: Finding weak keys and preimages. JSAT, 9:1–25, 2014.

8. Steven M LaValle. Planning algorithms. Cambridge University Press, 2006.
9. Chu Min Li and Anbulagan. Look-ahead versus look-back for satisfiability problems. In

Principles and Practice of Constraint Programming - CP97, Third International Conference,
Linz, Austria, October 29 - November 1, 1997, Proceedings, pages 341–355, 1997.

10. Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Exponential recency
weighted average branching heuristic for SAT solvers. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA., pages
3434–3440, 2016.

11. Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based
branching heuristic for SAT solvers. In Theory and Applications of Satisfiability Testing -
SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings,
pages 123–140, 2016.

12. Jia Hui Liang, Hari Govind V.K., Pascal Poupart, Krzysztof Czarnecki, and Vijay Ganesh.
An Empirical Study of Branching Heuristics Through the Lens of Global Learning Rate,
pages 119–135. Springer International Publishing, Cham, 2017.

13. Mao Luo, Chu-Min Li, Fan Xiao, Felip Manyà, and Zhipeng Lü. An effective learnt clause
minimization approach for cdcl sat solvers. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17, pages 703–711, 2017.

14. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages 530–535, 2001.

15. Hootan Nakhost and Martin Müller. Monte-carlo exploration for deterministic planning. In
IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, pages 1766–1771, 2009.

16. Vegard Nossum. Instance generator for encoding preimage, second-preimage, and collision
attacks on SHA-1. In Proceedings of SAT Competition, pages 119–120, 2013.

17. Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme for
satisfiability solvers. In Proceedings of SAT 2007, pages 294–299.

Exploration via Random Walks in CDCL SAT Solving amid Conflict Depression 11

18. Alessandro Previti, Raghuram Ramanujan, Marco Schaerf, and Bart Selman. Monte-carlo
style UCT search for boolean satisfiability. In AI*IA 2011: Artificial Intelligence Around
Man and Beyond - XIIth International Conference of the Italian Association for Artificial
Intelligence, Palermo, Italy, September 15-17, 2011. Proceedings, pages 177–188, 2011.

19. Jussi Rintanen. Engineering efficient planners with SAT. In Proceedings of ECAI 2012,
pages 684–689, 2012.

20. Bart Selman, Henry A. Kautz, and Bram Cohen. Local search strategies for satisfiability
testing. In Cliques, Coloring, and Satisfiability, Proceedings of a DIMACS Workshop, New
Brunswick, New Jersey, USA, October 11-13, 1993, pages 521–532, 1993.

21. Bart Selman, Hector J. Levesque, and David G. Mitchell. A new method for solving hard
satisfiability problems. In Proceedings of the 10th National Conference on Artificial Intelli-
gence. San Jose, CA, July 12-16, 1992., pages 440–446, 1992.

22. Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT
Press, Cambridge, MA, USA, 1st edition, 1998.

23. Fan Xie, Martin Müller, Robert Holte, and Tatsuya Imai. Type-based exploration with mul-
tiple search queues for satisficing planning. In Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada., pages
2395–2402, 2014.

	Exploration via Random Walks in CDCL SAT Solving amid Conflict Depression

