
Explaining WeightedCircuit Constraint Filtering

Raphaël Boudreault and Claude-Guy Quimper

Université Laval, Québec, QC, Canada
raphael.boudreault.1@ulaval.ca, claude-guy.quimper@ift.ulaval.ca

Abstract. We study the travelling salesman problem (TSP) in the con-
text of constraint programming. We propose a new filtering rule for the
Circuit constraint based on the cuts used in the state-of-the-art exact
TSP solver Concorde. We also propose to explain the filtering of the
WeightedCircuit constraint based on the 1-tree relaxation of Held
and Karp.

Keywords: Travelling salesman · Constraint programming · Circuit ·
WeightedCircuit · nogood · Cutting planes · 1-tree

1 Introduction

The travelling salesman problem (TSP) is a classic NP-Hard problem in combi-
natorial optimization and operational research that fascinates researchers since
its first mathematical formulation in 1930 [1]. It consists, given a number of cities
and the distances between each of them, to find a circuit with minimum total
distance, i.e. a minimal path visiting all cities and returning to its starting point
(a Hamiltonian circuit). The TSP, including its variants, has several applications
in a variety of areas, from logistics to DNA sequencing. In particular, it appears
naturally in many transportation and industrial problems.

At the moment, the state-of-the-art exact TSP solver Concorde can obtain
optimal solutions for instances of thousands of cities in a few seconds [1]. It uses
a branch-and-cut approach based on a linear relaxation in addition to specific
linear cuts for the TSP. Particular data structures allow an efficient cut genera-
tion. However, in practical situations, we usually need to add side constraints to
the TSP, such as time windows, vehicle capacities, and traffic avoidance. In that
case, Concorde can no longer be used and we need to use another technique.

A natural approach for this kind of problem with side constraints comes from
constraint programming (CP). In this programming paradigm, we consider a do-
main for each variable and the relations between them are initially expressed in
the form of constraints. These constraints can be linear inequalities, satisfaction
formulae, or any other global constraints, such as AllDifferent(x1, . . . , xn)
which specifies that the variables x1, . . . , xn must be pairwise distinct. For ex-
ample, a TSP with time windows could be modelled with a constraint requiring
that the variables representing the solution path are a minimal tour and another
one constraining the time of the visits. Each constraint has its respective domain
filtering algorithm that removes inconsistent values from the domains. That way,

2 R. Boudreault and C.-G. Quimper

we avoid trying assignments that lead to failure and we reduce significantly the
search tree.

In modern CP systems, the constraint Circuit encodes the requirement to
have a Hamiltonian cycle in an unweighted graph. Effective filtering algorithms
associated with this constraint are already widely used [2, 11]. For the TSP, i.e.
the case of a weighted graph, we rather need the WeightedCircuit constraint.
This constraint and its filtering algorithms [3, 5, 6] improved the power of con-
straint systems to solve the pure TSP, even if we are still well behind what
Concorde offers. For example, on a randomly generated TSP instance of 300
nodes, Benchimol et al. [3] showed that their filtering algorithm reduced the
solving time from 771 to 24 seconds, while Concorde needed only 2.32 seconds
to find an optimal solution.

In the past few years, constraint programming solvers became significantly
more efficient with the learning of constraints called nogoods. Each of these con-
straints corresponds essentially to the explanation of an infeasibility caused by a
specific assignment of variables. For example, Chuffed, OR-Tools (Google) and
CP-Optimizer (IBM) are constraint solvers that generate nogoods. In particular,
the lazy clause generation is a useful technique that combines domains filtering
and Boolean satisfiability to generate nogoods. While filtering domains, each
change is recorded as a clause, and it is only when a failure is encountered in the
search tree that a nogood is learnt. Then, they allow the solver to avoid making
the same choices that lead to these inconsistencies. Francis and Stuckey [8] used
this method to explain efficiently the filtering of the Circuit constraint.

Knowing that the global optimization efficiency of Concorde comes from
specific linear cuts that are gradually added to the base model, it would be
natural to think that the constraints solvers should add nogoods to the model
as well. Thus, we propose to involve Concorde’s specific cuts in the filtering of
the Circuit constraint and to explain the filtering of the WeightedCircuit
constraint in order to generate nogoods.

Take note that I, Raphaël, started my master’s degree in Computer science
only at the beginning of September, 2019. Therefore, I do not perfectly compre-
hend all the subtleties of constraint programming yet. Thus, in this article, I will
present the ideas that I want to explore during the time of my research.

2 Background

2.1 Circuit

Let G = (V,E) be an unweighted graph with vertices set V and edges set E,
|V | = n. Also, let X = (X1, . . . , Xn) be a vector of variables such that Xi

represents the successor of node i ∈ V = {1, . . . , n}. Recalling that the domain
of a variable Z, denoted by dom(Z), is the set of possible assignments for Z,
we have that dom(Xi) initially corresponds to the possible successors of node
i ∈ V . Thus, the constraint Circuit(X) is satisfied if and only if the edges
represented by the values of X form a Hamiltonian cycle of the graph, i.e. a

Explaining WeightedCircuit Constraint Filtering 3

path going through all vertices exactly once and having the same starting and
ending vertex.

2.2 Concorde and the TSP

Now, let w : E → R be the edge weights of the graph such that w(e) corresponds
to the weight of edge e ∈ E. Let δ(i) represent all edges adjacent to the vertex
i ∈ V , and more generally, δ(S) for S ⊂ V represent all the edges (i, j) with
i ∈ S and j ∈ V \ S, what we refer to the edges adjacent to S. The TSP can be
formulated as an integer linear program as follows, where xe is a binary variable
corresponding to whether edge e ∈ E is included in the tour or not [1]:

min
∑
e∈E

w(e)xe

s.t.
∑
e∈δ(i)

xe = 2 ∀i ∈ V (1)

∑
e∈δ(S)

xe ≥ 2 ∀S ⊂ V, |S| ≥ 3 (2)

xe ∈ {0, 1} ∀e ∈ E (3)

The equations (1) are known as the degree constraints and require that each
node have only two adjacent edges. The inequalities (2) are known as the sub-
tour elimination constraints and ensure the connectivity of the tour. Finally, (3)
specifies that it must be binary variables.

The Concorde solver [1] relaxes the problem and solves the TSP with a global
optimization. At first, it considers the assignment problem relaxation that is
obtained by relaxing the subtour (2) and integrality (3) constraints:

min
∑
e∈E

w(e)xe

s.t.
∑
e∈δ(i)

xe = 2 ∀i ∈ V

0 ≤ xe ≤ 1 ∀e ∈ E

Then, it searches for flaws in the obtained relaxed solution and corrects them
by adding specific linear constraints to the relaxation that are called cuts. This
technique is called the cutting-plane method. At each iteration, Concorde uses
a branch-and-cut scheme to resolve a new linear relaxation, find new cuts and
improve its TSP solution. The procedure terminates when no further improve-
ments can be made and that an optimal solution is found. Two types of cuts
are particularly efficient : subtour elimination cuts and comb inequalities. The
former consists to add specific subtour elimination constraints when the relaxed
solution is not a connected or 2-connected tour. The latter is a more interesting
concept that we describe in what follows.

4 R. Boudreault and C.-G. Quimper

A comb consists of H ⊂ V (the handle) and T1, . . . , Ts ⊂ V (the teeth) such
that:

– T1, . . . , Ts are pairwise disjoint;
– H ∩ Ti 6= ∅ and Ti \H 6= ∅ for all i ∈ {1, . . . , s};
– s ≥ 3 and is odd.

The comb inequality is

∑
e∈δ(H)

xe +

s∑
i=1

∑
e∈δ(Ti)

xe ≥ 3s+ 1. (4)

In other words, the number of edges adjacent to the handle plus the number of
edges adjacent to the teeth must be at least 3s + 1, where s is the number of
teeth. The Venn diagram of a comb in the case of s = 3 is depicted in figure 1.

H

T1 T2 T3

Fig. 1. Venn diagram of a comb with s = 3.

Let us give the intuition behind that inequality for this particular case. First,
notice that for every nonempty proper subset S ⊂ V , there must be an even
number of tour edges crossing the border of S. In addition, if S has exactly
two adjacent tour edges, which is the minimal case, there must be a single path
through S. Thus, if T1, T2 and T3 consist minimally of single paths, the tour
edges must cross the border of H at least three times. Hence, the left-hand side
of the inequality (4) must be at least 9, even in fact at least 10, since it must be
an even number.

In CP, the Circuit constraint filtering is essentially based on the subtour
elimination cuts [2, 5, 6]. Indeed, the filtering is mostly done by forcing the
2-connectivity of the solution. As we can see, there is an interesting analogy
to do between Concorde and CP for the Circuit constraint filtering.

2.3 WeightedCircuit

Keeping the notation of the last subsections, let now G = (V,E,w) be a weighted
graph with weight function w. We introduce the variable z corresponding to the

Explaining WeightedCircuit Constraint Filtering 5

total weight of the possible tour represented by X, with T ⊂ E the set of
the edges forming this tour. Thus, the constraint WeightedCircuit(X, z) is
defined by

WeightedCircuit(X, z) = Circuit(X) ∧

(∑
e∈T

w(e) ≤ z

)

i.e. will be satisfied if and only if the edges represented by the values of X form
a Hamiltonian cycle on the nodes V with total weight at most z. In CP, the TSP
can thus be reformulated simply as

min z

s. t. WeightedCircuit(X, z)

A particularly efficient filtering technique for the constraint WeightedCir-
cuit is called reduced-cost-based filtering [4–7]. It consists of first relaxing some
constraints of the problem and finding an optimal solution to this relaxed prob-
lem. Say we obtain a solution of cost c∗. Then, starting from that solution, we
calculate the reduced cost of a variable assignment, i.e. the marginal cost increase
of the solution if a variable, say Xi, is forced to take a certain value, say v. Let
the reduced cost of this assignment be c̄. If

c∗ + c̄ > max(dom(z))

i.e. the cost of the relaxed solution plus the reduced cost of the variable assign-
ment Xi = v is greater than the maximum value the optimal cost can take, then
we need to remove v from the domain of Xi. A recent use of this filtering method
can be found in the work of Benchimol et al. [3].

2.4 1-tree relaxation

A relaxation that is widely used in both Concorde [1] and constraint solvers [3]
is the 1-tree relaxation, introduced by Held and Karp [9, 10], and is the re-
sult of relaxing the degree constraints (1). Recalling that the vertices set is
V = {1, 2, . . . , n}, a 1-tree is defined by a spanning tree over the subgraph in-
duced by the nodes V \ {1} to which we add two distinct edges adjacent to the
node 1. Take note that the choice of the vertex 1 is arbitrary. The 1-tree relax-
ation consists only to find a 1-tree with minimum total weight. We can see that
it is a relaxation of the TSP by noting that every tour in a graph is a 1-tree and
that if a minimum 1-tree is a tour, then it is an optimal solution of the TSP. A
simple example of a minimum 1-tree is depicted in figure 2.

The lower bound obtained by the 1-tree relaxation can be improved by a
Lagrangian relaxation of the degree constraints (1). Recalling that the degree of a
node, noted deg(i) for i ∈ V , corresponds to the number of adjacent edges of that
node, if the degree of a vertex in the 1-tree is greater than two, we add a penalty

6 R. Boudreault and C.-G. Quimper

1

2 3

4 5

6

6 2

10

43 5 7

9 4

Fig. 2. Example of a minimum 1-tree that is not a tour, represented by bold edges.
The number near each edge corresponds to its weight.

on the weight of all the adjacent edges of that vertex. Let π = (π1, π2, . . . , πn)
be the penalty vector that is applied to the 1-tree (with π1 = 0), we have that

∑
e∈E

w(e)xe +

n∑
i=2

πi(deg(i)− 2)

is a lower bound for the TSP, for all penalty vectors. There exist subgradi-
ent optimization methods that allow to find a good penalty vector and reduces
greatly the gap with the optimal solution. In summary, this technique leads to
the following relaxation:

min
x,π

∑
e∈E

w(e)xe +

n∑
i=2

πi(deg(i)− 2)

s.t.
∑
e∈δ(1)

xe = 2 (5)

∑
e∈E

xe = |V | (6)∑
e∈δ(S)

xe ≥ 2 ∀S ⊂ V, |S| ≥ 3 (7)

xe ∈ {0, 1} ∀e ∈ E,

where constraints (5), (6) and (7) define the 1-tree structure of the relaxed
problem. The Held and Karp [9, 10] original approach for this problem was to
first compute a minimum spanning tree on G \ {1} and add the two edges with
the lowest costs adjacent to the node 1 to form an initial minimum 1-tree. Then,
in an iterative sequence, they perturb the one-tree by penalizing all the edges
(i, j) ∈ E. The new weights w̃(i, j) are defined by

w̃(i, j) = w(i, j) + πi + πj

Explaining WeightedCircuit Constraint Filtering 7

where πi = C · (deg(i) − 2) for a constant C. This way, we obtain a new
1-tree from which we perturb again until a specific stopping criterion is met.
Note that the optimal TSP tour is invariant under these transformations of the
weights. Benchimol et al. [3] used the reduced costs of this relaxation to filter
the WeightedCircuit constraint.

3 Ideas

3.1 Filtering and explanations for Circuit

In CP, we said before that adding subtour elimination cuts is the main filtering
technique for the Circuit constraint. Besides, we also noted that Concorde
uses a variety of linear cuts to efficiently solve the TSP without side constraints,
including the comb inequalities. Thus, we propose to develop a filtering technique
of the constraint involving the comb inequalities. For example, if we could find a
comb with three teeth that has a maximum of 10 intersection edges, then these
10 edges would need to be forced. We would, therefore, propose a new filtering
method and explanations would also need to be produced. This filtering method
could then be generalized to other similar types of inequalities used by Concorde
such as clique-tree inequalities, path inequalities and star inequalities [1].

3.2 Explanations for WeightedCircuit

Using the filtering method based on the 1-tree relaxation explained before, we
would like to generate an explanation in order to eventually obtain a nogood.
As for Circuit, explanations with fewer literals are usually more efficient in CP
solvers. Thus, we would like to know how to generate the smallest possible expla-
nation for the filtering of an edge with the 1-tree relaxation. Also, we would like
to know if there exist some penalty vectors that would filter an edge, but would
also minimize the size of this eventual explanation. Finding the answers of those
questions would then allow us to include the constraint WeightedCircuit in
a solver such as Chuffed.

4 Experimentation

During our research, we would like to implement our constraints in Chuffed
solver and test them on classic instances of the TSP from TSPLIB library [12].
We would also like to test the improvement of the generation of explanations for
the constraint WeightedCircuit on scheduling problems with setup times.

5 Conclusion

The travelling salesman problem is an NP-Hard problem that appears in many
situations and under many faces. The state-of-the-art exact TSP solver Concorde

8 R. Boudreault and C.-G. Quimper

offers the fastest way to obtain optimal solutions. However, it does not provide
the possibility to add side constraints, such as time windows. Thus, constraint
programming seems to be a natural way to get around this problem.

As we have seen, in CP, the constraint WeightedCircuit, an extension of
Circuit, encodes the TSP. The filtering algorithms associated with this con-
straint do not provide, for the moment, explanations and so do not generate
nogoods. We would like to improve the ability of CP solvers to solve the TSP by
proposing a filtering algorithm that generates explanations based on the 1-tree
relaxation of Held and Karp. Also, it seems that some interesting cuts used in
Concorde, such as combs, could be used in the filtering algorithms of the Circuit
constraint. In short, this is great research opportunities for years to come!

References

1. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Saleman
Problem : A Computational Study. Princeton University Press (2006)

2. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathemat-
ical and Computer Modelling 20(12), 97–123 (1994)

3. Benchimol, P., Hoeve, W.J.V., Régin, J.C., Rousseau, L.M., Rueher, M.: Improved
filtering for weighted circuit constraints. Constraints 17(3), 205–233 (2012)

4. Focacci, F., Lodi, A., Milano, M.: Cost-based domain filtering. In: Proceedings
of the Fifth International Conference on Principles and Practice of Constraint
Programming (CP). Lecture Notes in Computer Science, vol. 1713, pp. 189–203.
Springer (1999)

5. Focacci, F., Lodi, A., Milano, M.: Embedding relaxations in global constraints for
solving TSP and TSPTW. Annals of Mathematics and Artificial Intelligence 34(4),
291–311 (2002)

6. Focacci, F., Lodi, A., Milano, M.: A hybrid exact algorithm for the TSPTW.
INFORMS Journal on Computing 14(4), 403–417 (2002)

7. Focacci, F., Lodi, A., Milano, M., Vigo, D.: Solving TSP through the integration of
OR and CP techniques. Electronic Notes in Discrete Mathematics 1, 13–25 (1999)

8. Francis, K., Stuckey, P.J.: Explaining circuit propagation. Constraints 19(1), 1–29
(2014)

9. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning
trees. Operations Research 18, 1138–1162 (1970)

10. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning
trees: Part II. Mathematical Programming 1, 6–25 (1971)

11. Kaya, L.G., Hooker, J.: A filter for the circuit constraint. In: Proceedings of the 12th
International Conference on Principles and Practice of Constraint Programming
(CP). Lecture Notes in Computer Science, vol. 4204, pp. 706–710. Springer (2006)

12. Reinelt, G.: TSPLIB - A traveling salesman problem library. ORSA Journal on
Computing 3, 376–384 (1991), library available online at https://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/

