
Incomplete Distributed Constraint
Optimization Problems

Atena M. Tabakhi and William Yeoh

Department of Computer Science and Engineering, Washington University in St. Louis
{amtabakhi,wyeoh}@wustl.edu

Abstract. The Distributed Constraint Optimization Problem (DCOP) formula-
tion is a powerful tool to model cooperative multi-agent problems, especially
when they are sparsely constrained with one another. A key assumption in this
model is that all constraints are fully specified or known a priori, which may not
hold in applications where constraints encode preferences of human users. In this
paper, we extend the model to Incomplete DCOPs (I-DCOPs), where some con-
straints can be partially specified. User preferences for these partially-specified
constraints can be elicited during the execution of I-DCOP algorithms, but they
incur some elicitation costs. Additionally, we propose two parameterized heuris-
tics that can be used in conjunction with Synchronous Branch-and-Bound to solve
I-DCOPs. These heuristics allow users to trade off solution quality for faster run-
times and smaller number of elicitations. Our model and heuristics thus extend
the state of the art in distributed constraint reasoning to better model and solve
distributed agent-based applications with user preferences.

Keywords: DCOPs · Preference Elicitation ·Multi-Agent Systems.

1 Introduction

The Distributed Constraint Optimization Problem (DCOP) [13, 17] formulation is a
powerful tool to model cooperative multi-agent problems. DCOPs are well-suited to
model many problems that are distributed by nature and where agents need to coor-
dinate their value assignments to minimize the aggregate constraint costs. This model
is widely employed to model distributed problems such as meeting scheduling prob-
lems [11], sensor and wireless networks [1, 25], multi-robot teams coordination [26],
smart grids [7, 12, 3, 20], coalition structure generation [22], and smart homes [18, 2,
21].

The field of DCOP has matured significantly over the past decade since its incep-
tion [13]. DCOP researchers have proposed a wide variety of solution approaches, from
complete approaches that use distributed search-based techniques [13, 24, 14] to dis-
tributed inference-based techniques [17, 23]. There is also a significant body of work on
incomplete methods that can be similarly categorized into local search based methods
[10, 1], GDL-based techniques [23], and sampling-based methods [16, 15].Researchers
have also proposed the use of other off-the-shelf solvers such as logic programming
solvers [9, 8] and mixed-integer programming solvers [5].

One of the core limitations of all these approaches is that they assume that the
constraint costs in a DCOP are specified or known a priori. In some application, such as

2 Atena M. Tabakhi and William Yeoh

meeting scheduling problems, constraints encode the preferences of human users. As
such, some of the constraint costs may be unspecified and must be elicited from human
users.

To address this limitation, researchers have proposed the preference elicitation prob-
lem for DCOPs [19]. In this preference elicitation problem, some constraint costs are
initially unknown, and they can be accurately elicited from human users. The goal is
to identify which subset of constraints to elicit in order to minimize a specific form of
expected error in solution quality. This approach suffers from two limitations: First, it
assumes that the cost of eliciting constraints is uniform across all constraints. This is
unrealistic as providing the preferences for some constraints may require more cogni-
tive effort than the preferences for other constraints. Second, it decouples the elicitation
process from the DCOP solving process since the elicitation process must be com-
pleted before one solves the DCOP with elicited constraints. As both the elicitation and
solving process are actually coupled, this two-phase decoupled approach prohibits the
elicitation process from relying on the solving process.

Therefore, in this paper, we propose the Incomplete DCOP (I-DCOP) model, which
integrates both the elicitation and solving problem into a single integrated optimization
problem. In an I-DCOP, some constraint costs are unknown and can be elicited. Elicita-
tion of unknown costs will incur elicitation costs, and the goal is to find a solution that
minimizes the sum of constraint and elicitation costs incurred. To solve this problem,
we introduce a number of heuristics that can be used in conjunction with commonly-
used synchronous DCOP search algorithms such as Synchronous Branch-and-Bounds
(SyncBB) [6]. These heuristics are also parameterized in such a way that they allow
users to trade off solution quality for faster runtimes and smaller number of elicitations.
They also provide quality guarantees when solving problems without elicitation costs
when the underlying DCOP search algorithm is correct and complete.

2 Background

We now describe Distributed Constraint Optimization Problems (DCOPs) [13, 17],
which we will later extend to Incomplete DCOPs, as well as the Synchronous Branch-
and-Bound (SyncBB) algorithm [6], which we will use as the underlying DCOP search
algorithm that uses our proposed heuristics.

2.1 Distributed Constraint Optimization Problems

A Distributed Constraint Optimization Problem (DCOP) is a tuple 〈A,X ,D,F , α〉,
where,A = {ai}pi=1 is a set of agents; X = {xi}ni=1 is a set of decision variables;D =
{Dx}x∈X is a set of finite domains and each variable x ∈ X takes values from the set
Dx; F = {fi}mi=1 is a set of constraints, each defined over a set of decision variables:
fi :

∏
x∈xfi Dx → R ∪ {∞}, where infeasible configurations have∞ costs, xfi ⊆ X

is the scope of fi; and α : X → A is a mapping function that associates each decision
variable to one agent. A solution σ is a value assignment for a set xσ ⊆ X of variables
that is consistent with their respective domains. The costF(xσ) =

∑
f∈F,xf⊆xσ f(xσ)

is the sum of the costs across all the applicable constraints in xσ .

Incomplete Distributed Constraint Optimization Problems 3

A solution σ is a complete solution if xσ =X and is a partial solution otherwise.
The goal is to find an optimal complete solution x∗ = argminx F(x).

A constraint graph visualizes a DCOP, where nodes in the graph correspond to
variables in the DCOP and edges connect pairs of variables appearing in the same con-
straint. A pseudo-tree arrangement has the same nodes as the constraint graph and in-
cludes all the edges of the constraint graph. The edges in the pseudo-tree are divided
into tree edges, which connect parent-child nodes and all together form a rooted tree,
and backedges, which connect a node with its pseudo-parents and pseudo-children.

Two variables that are constrained together in the constraint graph must appear in
the same branch of the pseudo-tree. When the pseudo-tree has only a single branch,
it is called a pseudo-chain. One can also view a pseudo-chain as a complete ordering
of all the variables in a DCOP, which is used by SyncBB and in our descriptions later
on. Finally, unless otherwise specified, we assume that each agent controls exactly one
decision variable and thus use the terms “agent” and “variable” interchangeably.

3 Motivating Domain: Distributed Meeting Scheduling Problem

In a distributed meeting scheduling problem, an organization wishes to schedule a set
of meetings in a distributed manner, where meeting participants have constraints for
the different time slots that they are available as well as preferences over those time
slots. This problem has been one of the first and more popular motivating applications
for DCOPs since its inception [11, 17, 24]. While there are a number of possible for-
mulations, we use the Private Events as Variables (PEAV) formulation proposed by
Maheswaran et al. [11] in this paper. In the PEAV formulation, the agents are meeting
participants, their variables correspond to the different meetings that they must attend,
and their values correspond to the different time slots of the meetings.1 Equality con-
straints are imposed on variables of all agents involved in the same meeting – this
enforces that all participants of a meeting agree on the time of that meeting – and in-
equality constraints are imposed on all variables of a single agent – this enforces that
each participant cannot attend two meetings at the same time. Finally, unary constraints
are imposed on each of the agent’s variables where the costs correspond to the prefer-
ences of the participant on the different time slots.

To solve this problem, existing work has assumed that all the costs of such con-
straints are all known [11, 17, 24]. However, since these costs correspond to preferences
of human users, it is unrealistic to assume that all the preferences are known a priori.
These unknown preferences must thus be elicited if they are needed. Further, the elic-
itation of such preferences will incur elicitation costs that correspond to the degree at
which a user is bothered by the elicitation process. As the existing canonical DCOP
model is unable to capture these two features, we describe in the next section a DCOP
extension that models unknown constraint costs that must be elicited as well as the cost
of performing such elicitations.

4 Atena M. Tabakhi and William Yeoh

x1

x2x3

x1 x2 f̃1 f1 e1

0 0 ? 1 3
0 1 ? 2 2
1 0 1 1 0
1 1 1 1 0

x1 x3 f̃2 f2 e2

0 0 ? 3 1
0 1 ? 3 1
1 0 ? 1 1
1 1 1 1 0

x2 x3 f̃3 f3 e3

0 0 3 3 0
0 1 4 4 0
1 0 ? 1 1
1 1 ? 2 1

(a) Constraint Graph (b) Incomplete Constraint Costs and Elicitation Costs

Fig. 1: Example of Incomplete DCOP with Elicitation Costs

4 Incomplete DCOPs

An Incomplete DCOP (I-DCOP) extends a DCOP by allowing some constraints to be
partially specified. It is defined by a tuple 〈A,X ,D,F , F̃ , E , α〉, where A, X , D, F ,
and α are exactly the same as in a DCOP. There are two key differences:

• The set of constraints F are not known to an I-DCOP algorithm. Instead, only the set
of partially-specified constraints F̃ = {f̃i}mi=1 are known. Each partially-specified
constraint is a function f̃i :

∏
x∈xfi Dx → R ∪ {∞, ?}, where ? is a special element

denoting that the cost for a given combination of value assignment is not specified.
The costs R ∪ {∞} that are specified are exactly the costs of the corresponding
constraints fi ∈ F .
• E = {ei}mi=1 is the set of elicitation costs, where each elicitation cost ei :∏

x∈xfi Dx → R specifies the cost of eliciting the constraint cost of a particular
? in f̃i.

An explored solution space x̃ is the union of all solutions explored so far by a
particular algorithm. The cumulative elicitation cost E(x̃) =

∑
e∈E e(x̃) is the sum of

the costs of all elicitations conducted while exploring x̃.

The total cost F(x, x̃) = F(x)+ E(x̃) is the sum of both the cumulative constraint
costF(x) of solution x and the cumulative elicitation cost E(x̃) of the explored solution
space x̃. The goal is to find an optimal complete solution x∗ while eliciting only a cost-
minimal set of preferences from a solution space x̃∗. More formally, the goal is to find
(x∗, x̃∗) = argmin(x,x̃) F(x, x̃).

Figure 1(a) shows the constraint graph of an example I-DCOP that we will use
as a running example in this paper. It has three variables x1, x2, and x3 with iden-
tical domains D1 = D2 = D3 = {0, 1}. All three variables are constrained with
one another and Figure 1(b) shows the partially-specified constraints f̃i, their cor-
responding fully-specified constraints fi, and the elicitation costs ei. In this exam-
ple, the optimal complete solution is x∗ = 〈x1 = 1, x2 = 1, x3 = 0〉 and only
that solution is explored (i.e., x̃ = x∗). The constraint cost of that solution is 3
(= f1(〈x1 = 1, x2 = 1〉) + f2(〈x1 = 1, x3 = 0〉) + f3(〈x2 = 1, x3 = 0〉)). The cu-
mulative elicitation cost is 2 (= e2(〈x1=1, x3=0〉) + e3(〈x2=1, x3=0〉)). Thus, the
total cost is 5.

1 The description in this section assumes that each agent can control multiple variables.

Incomplete Distributed Constraint Optimization Problems 5

5 Using SyncBB to Solve I-DCOPs

To solve I-DCOPs, one can easily adapt existing DCOP algorithms by allowing them
to elicit unknown costs whenever those costs are needed by the algorithm. We describe
below how to adapt SyncBB to solve I-DCOPs as we will use this algorithm as the
underlying search algorithm that uses our proposed heuristics later.

The operations of SyncBB can be visualized with search trees. When SyncBB evalu-
ates a node n after exploring search space x̃, it considers only the cumulative elicitation
cost so far E(x̃) and the constraint costs of the CPA at node n, which we will refer to
as g-values, denoted by g(n).2 We refer to the sum of these values as f -values, denoted
by f(n, x̃) = g(n) + E(x̃).

6 Cost-Estimate Heuristics

To speed up the SyncBB algorithm, one can use cost-estimate heuristics h(n) to esti-
mate the sum of the constraint and elicitation costs needed to complete the CPA at a par-
ticular node n. And if those heuristics are underestimates of the true cost, then they can
be used to better prune the search space, that is, when f(n, x̃) = g(n)+h(n)+E(x̃) ≥
F(x, x̃), where x is the best complete solution found so far and x̃ is the current explored
solution space.

We now describe below two cost-estimate heuristics that can be used in conjunction
with SyncBB to solve I-DCOPs. These heuristics make use of an estimated lower bound
L on the cost of all constraints f ∈ F . Such a lower bound can usually be estimated
through domain expertise or can be set to 0 in the worst case since all costs are non-
negative. The more informed the lower bound, the more effective the heuristics will be
in pruning the search space.

Additionally, these heuristics are parameterized by two parameters – a relative
weight w ≥ 1 and an additive weight ε ≥ 0. When using these parameters, SyncBB
will prune a node n if:

w · f(n, x̃) + ε ≥ F(x, x̃) (1)

where x is the best complete solution found so far and x̃ is the current explored solution
space. Users can increase the weights w and ε to prune a larger portion of the search
space and, consequently, reduce the computation time as well as the number of pref-
erences elicited. However, the downside is that it will also likely degrade the quality
of solutions found. Further, in I-DCOPs where elicitations are free (i.e., the elicitation
costs are all zero), we theoretically show that the cost of solutions found are guaranteed
to be at most w ·OPT + ε, where OPT is the optimal solution cost.

6.1 Child’s Ancestors’ Constraints (CAC) Heuristic

Our first heuristic is called Child’s Ancestors Constraints (CAC) heuristic. It is defined
recursively from the leaf of the pseudo-chain (i.e., last agent in the variable ordering)

2 We use A* notations [4] here.

6 Atena M. Tabakhi and William Yeoh

used by SyncBB up to the root of the pseudo-chain (i.e., first agent in the ordering).
Agent xi in the ordering computes a heuristic value h(xi = di) for each of its values
di ∈ Di as follows: h(xi = di) = 0 if xi is the leaf of the pseudo-chain. Otherwise,

h(xi=di) = min
dc∈Dc

[
f̂(xi=di, xc=dc) + e(xi=di, xc=dc) + h(xc=dc)

+
∑

xk∈Anc(xc)\{xi}

min
dk∈Dk

f̂(xc=dc, xk=dk)

]
(2)

where xc is the next agent in the ordering (i.e., child of xi in the pseudo-chain),Anc(xc)
is the set of variables higher up in the ordering that xc is constrained with, and each es-
timated cost function f̂ corresponds exactly to a partially-specified function f̃ , except
that all the unknown costs ? are replaced with the lower bound L. Therefore, the esti-
mated cost f̂(x) is guaranteed to be no larger than the true cost f(x) for any solution
x.

For a parent xp of a leaf agent xl, the heuristic value h(xp=dp) is then the minimal
constraint and elicitation cost between the two agents, under the assumption that the
parent takes on value dp, and the sum of the minimal constraint cost of the leaf agent
with its ancestors. As the heuristic of a child agent is included in the heuristic of the
parent agent, this summation of costs are recursively aggregated up the pseudo-chain.

It is fairly straightforward to see that this heuristic can be computed in a distributed
manner – the leaf agent xl initializes its heuristic values h(xl=dl) = 0 for all its values
dl ∈ Dl and computes the latter term in Equation (2):∑

xk∈Anc(xl)

min
dk∈Dk

f̂(xl=dl, xk=dk) (3)

for each of its values dl ∈ Dl. It then sends these heuristic values and costs to its parent.
Upon receiving this message, the parent agent xp uses the information in the message
to compute its own heuristic values h(xp=dp) using Equation (2), computes the latter
term similar to Equation (3) above, and sends these heuristic values and costs to its
parent. This process continues until the root agent computes its own heuristic values, at
which point it starts the SyncBB algorithm.

6.2 Agent’s Descendants’ Constraints (ADC) Heuristic

Our second heuristic is called Agent’s Descendants’ Constraints (ADC) heuristic. Like
the CAC heuristic, it is also defined recursively from the leaf of the pseudo-chain used
by SyncBB up to the root of the pseudo-chain. Agent xi in the ordering computes a
heuristic value h(xi=di) for each of its values di ∈ Di as follows: h(xi = di) = 0 if
xi is the leaf of the pseudo-chain. Otherwise,

h(xi=di) = min
dc∈Dc

[
f̂(xi=di, xc=dc) + e(xi=di, xc=dc) + h(xc=dc)

]
+
∑

xj∈Des(xi)\{xc}

min
dj∈Dj

[
f̂(xi=di, xj=dj) + e(xi=di, xj=dj)

]
(4)

Incomplete Distributed Constraint Optimization Problems 7

where xc is the next agent in the ordering,Des(xi) is the set of variables lower down in
the ordering that xi is constrained with, and each estimated cost function f̂ is as defined
for the CAC heuristic above.

Like CAC, it is also straightforward to see that this heuristic can be computed in
a distributed manner – the leaf agent xl initializes its heuristic values h(xl = dl) = 0
for all its values dl ∈ Dl and sends these heuristic values to its parent. Upon receiving
this message, the parent agent xp uses the information in the message to compute its
own heuristic values h(xp= dp) using Equation (4) and sends them to its parent. This
process continues until the root agent computes its own heuristic values, at which point
it starts the SyncBB algorithm.

Two other types of heuristics that can have a large impact on the efficiency of the
search are the value- and variable-ordering heuristics:

Instead of choosing a random order to explore the different values of an agent,
we order their values according to the best-available cost function f(n, x̃) = g(n) +
h(n) + E(x̃), where n is the node corresponding to the value of the agent and x̃ is
the current explored solution space. Instead of choosing a random ordering of variables
for SyncBB, we order the variables based on the number of their constraints that has
unknown costs – the variable with the fewest number of constraints with unknown costs
as the root and the variable with the most number of constraints with unknown costs as
the leaf.

7 Empirical Evaluations

We evaluate SyncBB using our two heuristics – CAC and ADC – against a baseline
without heuristics on I-DCOPs with and without elicitation costs. We evaluate them on
distributed meeting scheduling problems, where we measure the various costs of the
solutions found – the cumulative constraint costs, cumulative elicitation costs, and their
aggregated total costs – the number of unknown costs elicited, and the runtimes of the
algorithms (in sec). Data points are averaged of over 50 instances.

Distributed Meeting Scheduling Problems: We generate 50 random problems, where
we set the number of meeting participants (= agents) |A| = 10, meeting time slots
(= domain size) |Di| = 3, density p1 to 0.4, and tightness p2 to 0.6. We vary the number
of participants of the meetings (= variables) |X | from 9 to 18. All time preferences
(constraint costs) and elicitation costs are randomly sampled from [0, 20].

Tables 1 tabulates our empirical results, where we vary the number of variables |X |.
We make the following observations:
As expected, the runtimes and number of unknown costs elicited by all algorithms in-
crease with increasing number of variables |X |. The reason is that the size of the prob-
lem, in terms of the number of constraints in the problem, increases with increasing
|X |. And all algorithms need to elicit more unknown costs and evaluate the costs of
more constraints before terminating. On problems with elicitation costs, SyncBB with
heuristics is still faster than without heuristics. However, neither heuristic dominates
the other. Overall, the use of heuristics reduces the number of unknown costs elicited
and the runtime which highlights the strengths of using our proposed heuristics.

8 Atena M. Tabakhi and William Yeoh

(a) Without Heuristics

|X | |F|
Without Elicitation Costs With Elicitation Costs
of runtime const. # of runtime total const. elic.
elic. cost elic. cost cost cost

9 15 15.48 4.92E-01 72.66 14.72 5.83E-01 207.32 78.50 128.82
12 26 14.66 3.47E+00 107.36 14.34 3.59E+00 248.80 108.86 139.94
15 43 14.66 3.16E+01 136.24 14.64 3.15E+01 270.32 137.48 132.84
18 61 13.68 2.08E+02 157.28 13.56 1.91E+02 284.88 159.40 125.48

(b) With CAC Heuristic

9 15 13.62 4.14E-01 72.66 11.48 2.74E-01 164.20 83.20 81.00
12 26 12.98 2.62E+00 107.36 10.20 1.74E+00 192.82 115.22 77.60
15 43 12.60 2.58E+01 136.24 11.60 1.78E+01 226.30 141.78 84.52
18 61 11.32 1.79E+02 157.28 10.72 1.42E+02 242.56 163.28 79.28

(c) With ADC Heuristic

9 15 12.80 3.54E-01 72.66 10.58 1.73E-01 154.62 77.32 77.30
12 26 12.28 2.36E+00 107.36 8.60 5.39E-01 186.80 113.00 73.80
15 43 12.12 2.20E+01 136.24 10.42 1.23E+01 216.26 140.56 75.70
18 61 11.40 1.85E+02 157.28 10.64 1.15E+02 240.04 163.96 76.08

Table 1: Meeting Scheduling Problems Varying Number of Variables |X |

8 Conclusions

Distributed Constraint Optimization Problems (DCOPs) have been used to model a va-
riety of cooperative multi-agent problems. However, they assume that all constraints
are fully specified, which may not hold in applications where constraints encode pref-
erences of human users. To overcome this limitation, we propose Incomplete DCOPs
(I-DCOPs), which extends DCOPs by allowing some constraints to be partially spec-
ified and the elicitation of unknown costs in such constraints incur elicitation costs.
Additionally, we propose two parameterized heuristics – CAC and ADC – that can be
used in conjunction with Synchronous Branch-and-Bound (SyncBB) to solve I-DCOPs.
These heuristics allow users to trade off solution quality for faster runtimes and smaller
number of elicitations. Further, in problems where elicitations are free, they provide
theoretical quality guarantees on the solutions found. Our empirical results show that
using our heuristics allow SyncBB to find solutions faster and with fewer elicitations.
On problems without elicitation costs, CAC is also shown to dominate ADC. In con-
clusion, our new model and heuristics improve the practical applicability of DCOPs as
they are now better suited to model multi-agent applications with user preferences.

Incomplete Distributed Constraint Optimization Problems 9

References

1. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Decentralised coordination of low-power
embedded devices using the Max-Sum algorithm. In: AAMAS. pp. 639–646 (2008)

2. Fioretto, F., Yeoh, W., Pontelli, E.: A multiagent system approach to scheduling devices in
smart homes. In: Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS). pp. 981–989 (2017)

3. Fioretto, F., Yeoh, W., Pontelli, E., Ma, Y., Ranade, S.: A distributed constraint optimization
(DCOP) approach to the economic dispatch with demand response. In: AAMAS. pp. 999–
1007 (2017)

4. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)

5. Hatano, D., Hirayama, K.: DeQED: An efficient divide-and-coordinate algorithm for DCOP.
In: IJCAI. pp. 566–572 (2013)

6. Hirayama, K., Yokoo, M.: Distributed partial constraint satisfaction problem. In: Proceedings
of CP. pp. 222–236 (1997)

7. Kumar, A., Faltings, B., Petcu, A.: Distributed constraint optimization with structured re-
source constraints. In: AAMAS. pp. 923–930 (2009)

8. Le, T., Fioretto, F., Yeoh, W., Son, T.C., Pontelli, E.: ER-DCOPs: A framework for dis-
tributed constraint optimization with uncertainty in constraint utilities. In: AAMAS (2016)

9. Le, T., Son, T.C., Pontelli, E., Yeoh, W.: Solving distributed constraint optimization problems
with logic programming. In: Proceedings of AAAI (2015)

10. Maheswaran, R., Pearce, J., Tambe, M.: Distributed algorithms for DCOP: A graphical
game-based approach. In: Proceedings of the International Conference on Parallel and Dis-
tributed Computing Systems (PDCS). pp. 432–439 (2004)

11. Maheswaran, R., Tambe, M., Bowring, E., Pearce, J., Varakantham, P.: Taking DCOP to the
real world: Efficient complete solutions for distributed event scheduling. In: Proceedings of
AAMAS. pp. 310–317 (2004)

12. Miller, S., Ramchurn, S., Rogers, A.: Optimal decentralised dispatch of embedded generation
in the smart grid. In: AAMAS. pp. 281–288 (2012)

13. Modi, P., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: Asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelligence 161(1–2), 149–180 (2005)

14. Netzer, A., Grubshtein, A., Meisels, A.: Concurrent forward bounding for distributed con-
straint optimization problems. Artificial Intelligence 193, 186–216 (2012)

15. Nguyen, D.T., Yeoh, W., Lau, H.C.: Distributed Gibbs: A memory-bounded sampling-based
DCOP algorithm. In: Proceedings of AAMAS. pp. 167–174 (2013)

16. Ottens, B., Dimitrakakis, C., Faltings, B.: DUCT: An upper confidence bound approach to
distributed constraint optimization problems. ACM Transactions on Intelligent Systems and
Technology 8(5), 69:1–69:27 (2017)

17. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Pro-
ceedings of IJCAI. pp. 1413–1420 (2005)

18. Rust, P., Picard, G., Ramparany, F.: Using message-passing DCOP algorithms to solve
energy-efficient smart environment configuration problems. In: Proceedings of IJCAI. pp.
468–474 (2016)

19. Tabakhi, A.M., Le, T., Fioretto, F., Yeoh, W.: Preference elicitation for DCOPs. In: Proceed-
ings of CP. pp. 278–296 (2017)

20. Tabakhi, A.M., Yeoh, W., Tourani, R., Natividad, F., Misra, S.: Communication-sensitive
pseudo-tree heuristics for dcop algorithms. International Journal on Artificial Intelligence
Tools 27(07), 1860008 (2018)

21. Tabakhi, A.M., Yeoh, W., Yokoo, M.: Parameterized heuristics for Incomplete Weighted
CSPs with elicitation costs. In: Proceedings of AAMAS (2019)

10 Atena M. Tabakhi and William Yeoh

22. Ueda, S., Iwasaki, A., Yokoo, M., Silaghi, M., Hirayama, K., Matsui, T.: Coalition structure
generation based on distributed constraint optimization. In: Proceedings of AAAI. pp. 197–
203 (2010)

23. Vinyals, M., Rodrı́guez-Aguilar, J., Cerquides, J.: Constructing a unifying theory of dynamic
programming DCOP algorithms via the generalized distributive law. Journal of Autonomous
Agents and Multi-Agent Systems 22(3), 439–464 (2011)

24. Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: An asynchronous branch-and-bound DCOP
algorithm. Journal of Artificial Intelligence Research 38, 85–133 (2010)

25. Yeoh, W., Yokoo, M.: Distributed problem solving. AI Magazine 33(3), 53–65 (2012)
26. Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., Sycara, K.: Distributed constraint op-

timization for teams of mobile sensing agents. Journal of Autonomous Agents and Multi-
Agent Systems 29(3), 495–536 (2015)

