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It is Good to Have a Joint!

Variables V = {1, . . . , n}. Variable i ∈ V takes values xi ∈ Di from a finite domain Di .
Joint probability distribution p(xV ) = p(x1, . . . , xn) captures all info about our system!

xBxA

xV

For A ⊆ V , denote xA = (xi )i∈V ∈ DA =
∏

i∈A Di .

I Given A ⊆ V , compute marginals p(xA) =
∑

xV\A
p(xV )

I Given A,B ⊆ V and xB , compute conditional p(xA |xB)

I Find the mode (= maximum) of p(xV ) or of its marginal or conditional

I Sample from p(xV ) or from its marginal or conditional

I Given A,B ⊆ V and xB , infer the ‘most likely’ configuration xA

I Having a family { pθ(xV ) | θ ∈ Θ }, learn θ from training data
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Undirected Graphical Model = Gibbs Distribution

Gibbs distribution with hypergraph H ⊆ 2V and potentials ψ: DA → R+:

p(xV ) =
1

Z

∏
A∈H

ψA(xA) where Z =
∑

xV∈DV

∏
A∈H

ψA(xA)

Examples:

I V = {1, 2, 3, 4}, H = {{2, 3, 4}, {1, 2}, {3, 4}, {3}}:
p(x1, x2, x3, x4) ∝ ψ234(x2, x3, x4)ψ12(x1, x2)ψ34(x3, x4)ψ3(x3)

I Distribution of arity 2 (’pairwise’) with graph E ⊆
(
V
2

)
:

p(xV ) ∝
∏
i∈V

ψi (xi )
∏
{i,j}∈E

ψij(xi , xj)

I Ising (Di = {0, 1}) and Potts (Di = {1, . . . , k}) model:

p(xV ) ∝
∏
{i,j}∈E

cij [[xi = xj ]]
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Maximum Entropy Property

Recall: The marginal distribution of p(xV ) on variables A ⊆ V is

p(xA) =
∑
xV\A

p(xV )

Fact: Gibbs distribution p(xV ) has maximum entropy among all distributions with given
marginals over H:

p(xA) = pA(xA), A ∈ H, xA ∈ DA

(Potentials ψA appear as Lagrange multipliers.)

Computing potentials ψA from marginals pA (‘moment matching’):

I ψA are unique (up to reparameterizations)

I not possible in closed form

I iterative algorithms: Iterative Proportional Fitting (IPF)

Application: ML learning of potentials from an i.i.d. sample from p(xV ).
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Markov Random Field

I Given an undirected graph E ⊆
(
V
2

)
I A distribution p(xV ) has a (global) Markov property if

C separates A and B in E =⇒ p(xA, xB |xC ) = p(xA |xC )p(xB |xC )

for all A,B,C ⊆ V .

Hammersley-Clifford: For every positive distribution p(xV ), TFAE:
I p(xV ) satisfies Markov property (= is a MRF) w.r.t. E .
I p(xV ) is a Gibbs distribution with H being the (maximal) cliques of E .

xC

xA

xB
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Inference

Let A ∪ B = V and A ∩ B = ∅. Inference: Given xB , infer xA.
1 Form the posterior p(xA |xB) (= a Gibbs distribution over a smaller hypergraph)
2 Find the ‘most likely’ assignment xA:

x∗A ∈ argmin
xA

∑
yA

p(yA |xB) `(xA, yA)

Two natural loss functions:
I `(xA, yA) = −[[xA = yA]] =⇒ maximum aposteriori (MAP) inference:

x∗A ∈ argmax
xA

∑
yA

p(yA |xB) [[xA = yA]] = argmax
xA

p(xA |xB)

I `(xA, yA) = −
∑
i∈A

[[xi = yi ]] =⇒ maximum posterior marginal inference:

x∗A ∈ argmax
xA

∑
i∈A

∑
yA

p(yA |xB) [[xi = yi ]]︸ ︷︷ ︸
p(xi |xB )

x∗i ∈ argmax
xi

p(xi |xB) ∀i ∈ A
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Gibbs Distribution in Exponential Form

p(xV ) ∝
∏
A∈H

ψA(xA) = eF (xV ) where F (xV ) =
∑
A∈H

fA(xA)

and fA: DA → R = R ∪ {−∞} are given by fA(xA) = logψA(xA).

VCSP (a.k.a. discrete energy minimization):

argmax
xV

p(xV ) = argmax
xV

F (xV )

I Sometimes also temperature t > 0:

pt(xV ) ∝ eF (xV )/t

Statistical physics: F (xV ) is (up to constant) negative energy of the system at
thermal equilibrium at microstate xV .

I Zero temperature limit: lim
t→0+

pt(xV ) > 0 ⇐⇒ xV ∈ argmax
xV

F (xV )
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GM in Computer Vision before 2000

Multidiscplinary topic: statistics, statistical physics, machine learning, computer vision,
optimization, AI, OR, signal processing, control, ...

In computer vision (+ machine learning?):

I iterated conditional modes (ICM) method for MAP inference: very poor

I Introducing MRFs to computer vision, annealed Gibbs sampler
[Geman and Geman, 1984]

I mean field (from statistical physics) [Mezard and Montanari, 2009],
[Wainwright and Jordan, 2008]

I Belief propagation/revision (= sum-product/max-product algorithm), junction tree
alg. [Pearl, 1988]:

I exactly computing (max-)marginals for bounded treewidth
I for any commutative semiring [Aji and McEliece, 2000]

I Loopy belief propagation [Pearl, 1988], [Murphy et al., 1999]:

I empirically, BP often approximates marginals even on cyclic graphs
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Sampling

Want a sequence of samples from p(xV ).

I Simple MCMC: Choose i ∈ V and sample new xi from p(xi |xV\{i}).

I For Gibbs distribution, known as Gibbs sampler.

Drawbacks:

I Often mixes slowly (infinitely slowly for crisp constraints).

I The samples are very dependent.

Towards curing both problems: perturb-and-MAP sampling [Hazan and Jaakkola, 2012]

I Perturb parameters of p randomly (in a clever way...).

I Find a maximizer xV of p.
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Reparameterizations (= Equivalent Transformations)

Let A,B ∈ H and B ⊆ A. For any function λ: DB → R,

fA(xA) + fB(xB) = fA(xA) + λ(xB)︸ ︷︷ ︸
f ′A(xA)

+ fB(xB)− λ(xB)︸ ︷︷ ︸
f ′B (xB )

.

Hence, replacing (fA, fB) with (f ′A, f
′
B) preserves the function F (xV ) =

∑
A∈H

fA(xA).

I This is a reparameterization of a single pair (fA, fB).
I More complex reparameterizations of F (xV ): compose reparameterizations for

different pairs ( =⇒ linear transformation of the weight vector f ).

For functions of arity 2,

F (xV ) =
∑
i∈V

fi (xi ) +
∑
{i,j}∈E

fij(xi , xj),

reparameterization of a pair (fi , fij) reads

fij(xi , xj) + fi (xi ) = fij(xi , xj) + λ(xi )︸ ︷︷ ︸
f ′ij (xi ,xj )

+ fi (xi )− λ(xi )︸ ︷︷ ︸
f ′i (xi )

.
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Belief Propagation/Revision

Let E be a tree. Iteration of Belief Revision: Reparameterize (fi , fij) to enforce

max
xj

(fij(xi , xj) + fj(xj)) = 0

That is: Find unary function λ: Di → R such that max
xj

(fij(xi , xj) + λ(xi ) + fj(xj)) = 0. Hence

λ(xi ) = −max
xj

(fij(xi , xj) + fj(xj)).

After two passes (from/to a root) it holds globally. This exposes max-marginals:

max
xV\i

F (xV ) = fi (xi ), max
xV\{i,j}

F (xV ) = fi (xi ) + fij(xi , xj) + fj(xj)

Works for any commutative semiring, not only (R,max,+) [Aji and McEliece, 2000]:
I semiring (R+,+,×): ‘sum-product algorithm’, belief propagation
I semiring (R+,max,×): ‘max-product algorithm’, belief revision

Loopy BP: If E has loops, repeatedly enforcing

max
xj

(fij(xi , xj) + fj(xj)) = constij

often converges. Then, max-marginals are exposed (up to constants) in every subtree!
=⇒ approximate max-marginals
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Graph Cut Revolution in Vision (2000-2005)

I reduction for VCSPs with Di = {0, 1} and fij(xi , xj) = [[xi = xi ]] [Greig et al., 1989]

I reduction for Di = {1, . . . , k} and fij(xi , xj) = g(|xi − xj |) with convex g
[Ishikawa, 2003]

I reinventing submodularity:
I LP relaxation exact for supermodular VCSPs of arity ≤2 [Schlesinger and Flach, 2000]

I supermodular VCSPs with Di = {0, 1} and arity ≤3 [Kolmogorov and Zabih, 2002]

Recall: For totally ordered domains Di , function fA is supermodular if

fA(min{xA, yA}) + fA(max{xA, yA}) ≥ fA(xA) + fA(yA) ∀xA, yA ∈ DA

I very-large-neighborhood search with graph cuts (α-expansion, αβ-swap, ...)
[Boykov et al., 2001]

I max-flow implementation efficient for vision problems: [Boykov and Kolmogorov, 2004]

I multilabel (variable with any finite domain) supermodular finite-valued
[Schlesinger and Flach, 2006]

I permuted submodular [Schlesinger, 2007]

I persistency by roof duality [Hammer et al., 1984, Boros and Hammer, 2002],
[Rother et al., 2007]
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Image Segmentation by Graph Cuts

Observing image values yV ∈ {0, . . . , 255}V , infer segmentation xV ∈ {0, 1}V :

max
xV∈{0,1}V

∑
i∈V

log p(yi |xi ) +
∑
{i,j}∈E

cij [[xi = xj ]] (cij ≥ 0)

yV

xV

t (background)

s (foreground)

fi(0)

fi(1)

i

j

cij
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Example

input image

segmentation, cij = c = 0
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Example

input image

segmentation, cij = c = 20
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Example

input image

segmentation, cij = c = 30
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Example

input image

segmentation, cij = c = 40
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Example

input image
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Example

input image
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Example

input image
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Example

input image

segmentation, cij = c = 64
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Example

input image

segmentation, cij = c = 65
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Example

input image
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Example

input image

segmentation, cij = c = 67
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Example

input image

segmentation, cij = c = 68
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GrabCut [Rother et al., 2004]

Practical image segmentation:

I Powerfull pixel-wise color model pθ(yi |xi ) (mixture of Gaussians, histogram, ...).

I Estimate simultaneously labeling xV and parameters θ: alternating maximization
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Very Large Neighborhood Search with Submodular Subproblems

Let D = {1, . . . , k}. Want to solve

max
xV∈DV

F (xV ) =
∑
i∈V

fi (xi ) +
∑
{i,j}∈E

fij(xi , xj)

Given a labelling xV ∈ DV and a label α ∈ D, do α-expansion:

max
yV∈{0,1}V

F (xV u yV ) where (xV u yV )i =

{
xi if yi = 0

α if yi = 1

Fact: This problem is submodular if fij are metric:
I f (x , y) = f (y , x) ≥ 0
I f (x , y) = 0 =⇒ x = y
I f (x , y) + f (y , z) ≤ f (x , z)

Examples:
I f (x , y) = [[x = y ]] (uniform/Potts metric)
I f (x , y) = −min{K , |x − y |} (truncated linear metric)

VLNS: Choose α ∈ D and do α-expansion till convergence:
I constant approximation ratio
I [Boykov et al., 2001] and many follow-ups!
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Examples from Vision [courtesy of Y.Boykov and co-authors]

Stereo correspondence

input ground truth disparity
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Examples from Vision [courtesy of Y.Boykov and co-authors]

Stereo correspondence

input ground truth disparity α-expansions

Semantic segmentation

input segmentation

Volumetric reconstructions from images:

input output
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LP Relaxation of VCSP in Machine Vision/Learning: History

Kiev (Ukraine), 1970’s (reviewed by [Werner, 2007]):

I [Shlezinger, 1976]: binary CSP and VCSP (’2-dimensional grammars’), LP relaxation,
reparameterizations

I [Kovalevsky and Koval, 1975]: max-sum diffusion

I [Koval and Schlesinger, 1976]: algorithm similar to VAC algorithm [Cooper et al., 2010]

In optimization:

I [Koster et al., 1998]: LP relaxation for binary VCSP, cycle-based cutting planes

I [Chekuri et al., 2001]: LP relaxation for metric binary VCSP

In machine learning and computer vision:

I [Wainwright and Jordan, 2008] + earlier works since 2002: marginal polytope, dual =
combination of spanning (hyper-)trees, tree-reweighted message passing (TRW)

I [Kolmogorov, 2006]: sequential version of TRW (TRW-S) converges, fixed points are
not global optima for dual LP

I [Johnson et al., 2007], [Komodakis et al., 2007]: dual decomposition

I higer-level LP relaxations, cutting planes: [Sontag and Jaakkola, 2007],
[Johnson et al., 2007], [Komodakis and Paragios, 2008], [Sontag et al., 2008], [Werner, 2010]
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Hierarchy of LP Relaxations of VCSP

VCSP as a linear program:

max
xV∈DV

F (xV ) = max
p∈∆V

〈F , p〉 where ∆V =
{
p: DV → R+,

∑
xV

p(xV ) = 1
}

Substitute for F (xV ) and split the sum over xV :

〈F , p〉 =
∑
xV

∑
A∈H

fA(xA)p(xV ) =
∑
A∈H

∑
xA

fA(xA)
∑
xV\A

p(xV )

︸ ︷︷ ︸
p(xA)

=
∑
A∈H

〈fA, pA〉

where pA(xA) = p(xA) are marginals of p on every A ∈ H.

Here is the resulting LP ...

max
∑
A∈H

〈fA, pA〉

subject to p(xA) = pA(xA), A ∈ H, xA ∈ DA

p ∈ ∆V
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Examples of the Coupling Graph

I Nodes are all subsets A ⊆ V = {1, 2, 3, 4}.
I Subsets A ∈ H are circled.

I Edges form the coupling graph J ⊆ { (A,B) | B ⊆ A ⊆ V }.

123 124 134 234

13

1234

12 14 23 24 34

4321

local (= within H) relaxation
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Adding Zero Constraints

Recall a reparameterization of a pair (fA, fB) (where A,B ∈ H and B ⊆ A):

fA(xA) + fB(xB) = fA(xA) + λ(xB)︸ ︷︷ ︸
f ′A(xA)

+ fB(xB)− λ(xB)︸ ︷︷ ︸
f ′B (xB )

.

Replacing (fA, fB) with (f ′A, f
′
B) preserves the function F (xV ) =

∑
A∈H

fA(xA).

Add zero constraints fA = 0 for all subsets A ⊆ V , A /∈ H:

F (xV ) =
∑
A∈H

fA(xA) =
∑
A⊆V

fA(xA)

I Now we can reparameterize any pair (fA, fB) such that B ⊆ A ⊆ V .

I Reparameterizations permitted by J: (A,B) ∈ J.
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Dual LP Relaxation

max
xV

∑
A⊆V

fA(xA) ≤
∑
A⊆V

max
xA

fA(xA)

where equality holds iff there is xV ∈ DV such that

xA ∈ argmax
yA

fA(yA) ∀A ⊆ V .

This is the CSP f̄ formed by locally maximal tuples:

f̄A(xA) =

1 if xA ∈ argmax
yA

fA(yA)

0 otherwise

Dual LP: Minimize the upper bound by reparameterizations permitted by J.

22 / 47



Max-sum Diffusion

Minimizing the upper bound by reparameterizations = unconstrained minimization of
convex piecewise affine function.

Max-sum diffusion [Kovalevsky and Koval, 1975], [Werner, 2007], [Werner, 2010]:
Iteration: Choose a pair (A,B) ∈ J and reparameterize (fA, fB) to enforce

max
xA\B

fA(xA) = fB(xB), xB ∈ DB .

That is: find λ: DB → R such that

max
xA\B

(fA(xA) + λ(xB)) = max
xA\B

fA(xA) + λ(xB) = fB(xB)− λ(xB),

hence λ(xB) = 1
2

(
fB(xB)−max

xA\B
fA(xA)

)
.

I Monotonically decreases the upper bound.

I = version of block-coordinate descent to solve the dual LP relaxation.

I Empirically, always converges to a fixed point (proof unknown!).

I Can be formulated for other commutative semirings [Werner, 2015].
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Non-global Fixed Points of Coordinate Descent

For non-smooth convex functions, block-coordinate descent can get stuck in a local
minimum.

Example: For the (convex) function

f (x , y) = max{x − 2y , y − 2x},
point (x , y) = (0, 0) is minimal separately for each x and y but not globally.

Example: Arc-consistent CSP for which the upper bound is not minimal:
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Local Consistencies of Locally Maximal Tuples

Recall the CSP f̄ formed by locally maximal tuples:

f̄A(xA) =

1 if xA ∈ argmax
yA

fA(yA)

0 otherwise

Clearly,
max
xA\B

fA(xA) = fB(xB) =⇒ max
xA\B

f̄A(xA) = f̄B(xB)

Thus, at a fixed point of max-sum diffusion, the CSP satisfies J-consistency:

max
xA\B

f̄A(xA) = f̄B(xB), (A,B) ∈ J, xB ∈ DB .

Special cases of J-consistency:

I GAC: J = { (A, {i}) | i ∈ V , A ∈ H } (exact for permuted supermodular VCSPs)

I PWC: J = { (A,B) | A,B ∈ H } and H is closed under intersection
(A,B ∈ H =⇒ A ∩ B ∈ H)

I k-consistency: PWC and
(
V
k

)
⊆ H (can be added incrementally)
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Example: Syntactic image analysis

Find the image containing non-overlapping rectangles, nearest to input image.

I V = pixels, E = edges between neighboring pixels

I Di = {E, I, L, R, T, B, TL, TR, BL, BR } are syntactic parts of a rectangle.

I fi (xi ) = agreement of intensity of label xi and intensity of input pixel i .

I fij(xi , xj) equals 0 if parts xi and xj ever neighbor, and −∞ otherwise.

E E E E E E E

E E

E E

E E

E E

E E E E E E E

TL T T T

II

III

L

L

BL B B B BR

R

R

TR

I

hidden states = syntactic parts input output
observed states = {black,white}
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Example: Binary VCSP with a Global (Cardinality) Constraint [Werner, 2010]

max
xV∈{0,1}V

F (xV ) =
∑
i∈V

p(yi |xi ) +
∑
{i,j}∈E

c[[xi = xj ]] + δm(xV )

where
δm(xV ) =

{
0 if

∑
i∈V = m

∞ otherwise

To enforce GAC by max-sum diffusion, we need an oracle to calculate

max
xV\{j}

(
δm(xV ) +

∑
i∈V

λi (xi )
)

for any j ∈ V and any unary functions λi : Di → R.

m = 2000
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Example: Binary VCSP with a Global (Cardinality) Constraint [Werner, 2010]

max
xV∈{0,1}V

F (xV ) =
∑
i∈V

p(yi |xi ) +
∑
{i,j}∈E

c[[xi = xj ]] + δm(xV )

where
δm(xV ) =

{
0 if

∑
i∈V = m

∞ otherwise

To enforce GAC by max-sum diffusion, we need an oracle to calculate

max
xV\{j}

(
δm(xV ) +

∑
i∈V

λi (xi )
)

for any j ∈ V and any unary functions λi : Di → R.

m = 3000
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Example: Binary VCSP with a Global (Cardinality) Constraint [Werner, 2010]

max
xV∈{0,1}V

F (xV ) =
∑
i∈V

p(yi |xi ) +
∑
{i,j}∈E

c[[xi = xj ]] + δm(xV )

where
δm(xV ) =

{
0 if

∑
i∈V = m

∞ otherwise

To enforce GAC by max-sum diffusion, we need an oracle to calculate

max
xV\{j}

(
δm(xV ) +

∑
i∈V

λi (xi )
)

for any j ∈ V and any unary functions λi : Di → R.

m = 4000
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Example: Binary VCSP with a Global (Cardinality) Constraint [Werner, 2010]

max
xV∈{0,1}V

F (xV ) =
∑
i∈V

p(yi |xi ) +
∑
{i,j}∈E

c[[xi = xj ]] + δm(xV )

where
δm(xV ) =

{
0 if

∑
i∈V = m

∞ otherwise

To enforce GAC by max-sum diffusion, we need an oracle to calculate

max
xV\{j}

(
δm(xV ) +

∑
i∈V

λi (xi )
)

for any j ∈ V and any unary functions λi : Di → R.

m = 5000
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Example: Binary VCSP with a Global (Cardinality) Constraint [Werner, 2010]

max
xV∈{0,1}V

F (xV ) =
∑
i∈V

p(yi |xi ) +
∑
{i,j}∈E

c[[xi = xj ]] + δm(xV )

where
δm(xV ) =

{
0 if

∑
i∈V = m

∞ otherwise

To enforce GAC by max-sum diffusion, we need an oracle to calculate

max
xV\{j}

(
δm(xV ) +

∑
i∈V

λi (xi )
)

for any j ∈ V and any unary functions λi : Di → R.

m = 5368
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Example: Binary VCSP with a Global (Cardinality) Constraint [Werner, 2010]

max
xV∈{0,1}V

F (xV ) =
∑
i∈V

p(yi |xi ) +
∑
{i,j}∈E

c[[xi = xj ]] + δm(xV )

where
δm(xV ) =

{
0 if

∑
i∈V = m

∞ otherwise

To enforce GAC by max-sum diffusion, we need an oracle to calculate

max
xV\{j}

(
δm(xV ) +

∑
i∈V

λi (xi )
)

for any j ∈ V and any unary functions λi : Di → R.

m = 6000
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Example: Binary VCSP with a Global (Cardinality) Constraint [Werner, 2010]

max
xV∈{0,1}V

F (xV ) =
∑
i∈V

p(yi |xi ) +
∑
{i,j}∈E

c[[xi = xj ]] + δm(xV )

where
δm(xV ) =

{
0 if

∑
i∈V = m

∞ otherwise

To enforce GAC by max-sum diffusion, we need an oracle to calculate

max
xV\{j}

(
δm(xV ) +

∑
i∈V

λi (xi )
)

for any j ∈ V and any unary functions λi : Di → R.

m = 7000
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Example: Binary VCSP with a Global (Cardinality) Constraint [Werner, 2010]

max
xV∈{0,1}V

F (xV ) =
∑
i∈V

p(yi |xi ) +
∑
{i,j}∈E

c[[xi = xj ]] + δm(xV )

where
δm(xV ) =

{
0 if

∑
i∈V = m

∞ otherwise

To enforce GAC by max-sum diffusion, we need an oracle to calculate

max
xV\{j}

(
δm(xV ) +

∑
i∈V

λi (xi )
)

for any j ∈ V and any unary functions λi : Di → R.

m = 8000

27 / 47



Example: Binary VCSP with a Global (Cardinality) Constraint [Werner, 2010]

max
xV∈{0,1}V

F (xV ) =
∑
i∈V

p(yi |xi ) +
∑
{i,j}∈E

c[[xi = xj ]] + δm(xV )

where
δm(xV ) =

{
0 if

∑
i∈V = m

∞ otherwise

To enforce GAC by max-sum diffusion, we need an oracle to calculate

max
xV\{j}

(
δm(xV ) +

∑
i∈V

λi (xi )
)

for any j ∈ V and any unary functions λi : Di → R.

m = 9000
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Dual Cutting Plane Algorithm

Find an infeasible sub-CSP and add the zero constraint over its scope:
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Other Block-Coordinate Descent Algorithms

I MPLP [Globerson and Jaakkola, 2008]:
Choose A ∈ V and reparameterize (fA, fB) such that (A,B) ∈ J, to enforce

1

nA
max
xA\B

(
fA(xA) +

∑
(A,C)∈J

fC (xC )
)

= fB(xB)

where nA is the number of pairs (A,B) ∈ J.

Compare fixed point conds. for binary problems (A = {i , j} and B = {i}):

max
xj

fij(xi , xj) = fi (xi ) (max-sum diffusion)

max
xj

(fij(xi , xj) + fj(xj)) = fi (xi ) (MPLP)

max
xj

(fij(xi , xj) + fj(xj)) = constij (loopy BP)

I TRW-S [Kolmogorov, 2006]: chain-wise iterations (takes finite time for a tree)

I SRMP [Kolmogorov, 2015]: generalizes TRW-S for VCSPs of any arity

VAC algorithm [Cooper et al., 2010] (and [Koval and Schlesinger, 1976]): similar nature
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Dual/Lagrange Decomposition

Let
F (xV ) =

∑
k

F k(xV ) where F k(xV ) =
∑
A∈Hk

f kA (xA)

Then
max
xV

F (xV ) = max
xV

∑
k

F k(xV ) ≤
∑
k

max
xV

F k(xV )

Minimize RHS over functions f kA subject to F (xV ) =
∑
k

F k(xV ).

I Yields a hierarchy of relaxations, equivalent to the above LP hierarchy.

Block-coordinate descent iteration:

I Choose A ∈ H and minimize over f kA , Hk 3 A.

I Sufficient for optimum: max-marginals

max
xV\A

F k(xA)

must be the same for all k (‘max-marginal averaging’).
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Universality of LP Relaxation of (V)CSP

Find an efficient algorithm for (exactly) solving LP relaxation of VCSP!

Known for VCSP with |Di | = 2 and binary constraints: its LP relaxation reduces in
linear time to max-flow [Edmonds and Pulleyblank], [Boros and Hammer, 2002]

Impossible for more general VCSP:

I [Pr̊uša and Werner, 2015]: The general LP reduces in linear time to LP relaxation of
VCSP with |Di | = 3 and binary constraints

=⇒ Finding a feasible solution to LP relaxation of CSP is as hard as solving any system
of linear inequalities

I [Pr̊uša and Werner, 2019]: The general LP reduces in linear time to LP relaxation of:
set cover/packing,
facility location,
maximum satisfiability,
maximum independent set,
multiway cut

Open problem: Is enforcing VAC in VCSP easier than solving the general LP?
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I [Pr̊uša and Werner, 2015]: The general LP reduces in linear time to LP relaxation of
VCSP with |Di | = 3 and binary constraints
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Persistency

[Shekhovtsov et al., 2015, Shekhovtsov, 2016, Shekhovtsov et al., 2018]

[slides on persistency are courtesy of A.Shekhovtsov, P.Swoboda, B.Savchynskyy]

Integer (0-1) LP : max{ 〈c , x〉 | Ax = b, x ∈ {0, 1}n }
Its LP relaxation: max{ 〈c , x〉 | Ax = b, x ∈ [0, 1]n }

x∗ = (0, 1, 1, 0, 1
2 ,

1
2 ,

1
3 , 1, 0, . . . )

1 Is the integer part of an optimal solution to LP optimal for ILP?

2 Is any part of the integer part of an optimal solution to LP optimal for ILP?

3 Find optimal LP solution with largest integer part optimal to ILP!
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Examples

Vertex packing:

I [Balinski, 1965], [Lorentzen, 1966]: All vertices of the LP feasible set are half-integral.

I [Edmonds and Pulleyblank] LP reduces to max-flow

I [Nemhauser and Trotter, 1975]: weak persistency: variables with binary values in an
optimal LP solution attain the same values in an optimal ILP solution.

I [Picard and Queyranne, 1977]: There is unique largest set of variables that are integer
in an optimal solution to LP.

Quadratic pseudo-boolean optimization (QPBO) [Hammer et al., 1984, Boros et al., 1991]:

I generalizes vertex packing

I All vertices of the LP feasible set are half-integral.

I LP reduces to max-flow

I weak persistency: variables with binary values in an optimal LP solution attain the
same values in an optimal ILP solution.

I strong persistency: variables with binary values in all optimal LP solutions attain
the same values in all optimal ILP solutions.
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Improving Maps

Let P: DV → DV be induced by idempotent maps Pi : Di → Di component-wise.
I P is improving if

F (P(xV )) ≥ F (xV ) ∀xV ∈ DV .

Existence of an improving map =⇒ some domains can be reduced!
NP-complete to decide if a given P is improving.

I P is locally improving if

fA(P(xA)) ≥ fA(xA) ∀A ∈ H, xA ∈ DA

Sufficient for being improving, easy to decide, but weak.

I P is relaxed-improving if

f ′A(P(xA)) ≥ f ′A(xA) ∀A ∈ H, xA ∈ DA

for some reparameterization f ′A of functions fA.
Sufficient for being improving, tractable to decide (via LP relaxation), stronger!

Even possible maximum persistency [Shekhovtsov et al., 2018]:

min
P∈P

∑
i∈V

|Pi (Di )| subject to that P is relaxed-improving
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Generality of Relaxed-Improving Maps

Relaxed-improving condition holds for all of these previous methods:

I arity ≤2:

I simple DEE [Goldstein, 1994]

I MQPBO [Kohli et al., 2008]

I [Kovtun, 2003] one-against-all
I [Kovtun, 2011] iterative
I [Swoboda et al., 2014]

I any arity, boolean variables:

I roof duality / QPBO [Hammer et al., 1984]

I reductions: HOCR [Ishikawa, 2011], [Fix et al., 2011]

I bisubmodular relaxations [Kolmogorov, 2010]

I generalized roof duality [Kahl and Strandmark, 2011]

I persistency by [Adams et al., 1998]
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OpenGM Benchmark: Easy Examples

Some problems are easy (TRWS finds optimal solution or near)

Object Segmentation
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OpenGM Benchmark: Hard Examples

Some are harder: Stereo

TRW-S
62s

+180s
75%
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OpenGM Benchmark: Very Hard Examples

Panorama Stitching
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Panorama Stitching with Constraints
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OpenGM Benchmark

Problem family [29]-CPLEX [29]-TRWS "-L1[25] Our-CPLEX Our-TRWS
10x10 Potts-3 0.18s 58.46% 0.05s 58.38% 0.05s 72.27% 0.18s 72.27% 0.04s 72.21%
10x10 full-3 0.24s 2.64% 0.09s 1.22% 0.06s 62.90% 0.24s 62.90% 0.05s 62.57%
20x20 Potts-3 3.25s 73.95% 0.21s 68.49% 0.87s 87.38% 2.43s 87.38% 0.06s 87.38%
20x20 full-3 2.81s 0.83% 0.37s 0.83% 0.95s 72.66% 3.03s 72.66% 0.07s 72.31%
20x20 Potts-4 12.45s 23.62% 0.39s 18.43% 19.40s 74.28% 8.56s 74.28% 0.08s 73.63%
20x20 full-4 3.96s 0.01% 0.39s 0.01% 21.08s 6.28% 12.41s 6.58% 0.08s 6.58%

Table 1. Performance evaluation on random instances of [25]. For each problem family (size, type of potentials and number of labels)
average performance over 100 samples is given. To allow for precise comparison all methods are initialized with the same test labeling y
found by LP relaxation. Our-TRWS closely approximates Our-CPLEX, which matches "-L1[25], and scales much better.

Problem family #I #L #V MQPBO MQPBO-10 Kovtun [29]-TRWS Our-TRWS
mrf-stereo 3 16-60 > 100000 † † † 2.5h 13% 117s 73.56%
mrf-photomontage 2 5-7  514080 93s 22% 866s 16% † 3.7h 16% 483s 41.98%
color-seg 3 3-4  424720 22s 11% 87s 16% 0.3s 98% 1.3h >99% 61.8s 99.95%
color-seg-n4 9 3-12  86400 22s 8% 398s 14% 0.2s 67% 321s 90% 4.9s 99.26%
ProteinFolding 21  483  1972 685s 2% 2705s 2% † 48s 18% 9.2s 55.70%
object-seg 5 4-8 68160 3.2s 0.01% † 0.1s 93.86% 138s 98.19% 2.2s 100%

Table 2. Average performance on OpenGM benchmarks. Columns #I,#L,#V denote the number of instances, labels and variables respec-
tively. † – result is not available (memory / implementation / other reason).

Our-CPLEX Our Algorithm 1 (Iterative Relaxed Infer-
ence) using CPLEX [8].

Our-TRWS Our Algorithm 2 using TRW-S [12]. Initial
solution uses at most 1000 iterations (or the
method has converged). All speedups.

[29]-CPLEX Method of Swoboda et al. [29, 30] with
CLPEX.

[29]-TRWS Method [29, 30] with TRW-S.
"-L1[25] Single LP formulation of the maximum

strong persistency [25] solved with CPLEX.
Kovtun One-against-all method of Kovtun [15].
MQPBO Multilabel QPBO [11].

MQPBO-10 MQPBO with 10 random permutations, ac-
cumulating persistency.

Table 3. List of Evaluated Methods

number of labels [5]. Is this advantage preserved if we con-
sider the cost vector g = (I�P )

Tf or even ḡ (13)? It turns
out that the answer in both cases is positive, we give details
in §D.3.

Summary of Speedups. We apply the techniques described
in this section in the loop of Algorithm 2 as follows.
Attempt a single node pruning for all nodes u 2 V and
all labels i 2 Y

v

. Run the dual solver (line 4) on the re-
duced problem ḡ (13) using warm start from the current
reparametrization ' until either of the following:

1. it has found a primal solution x such that: hḡ, �(x)i 
0 and p(x) 6= x;

2. iteration limit was exceeded or the solver has con-
verged.

In the first case, apply the pruning negative labeling tech-
nique to x. Otherwise, perform step 7. If the dual solver

has converged, Lemma 4.4 guarantees either correct termi-
nation or that further pruning is possible. At the same time,
warm start allows the solver to converge eventually despite
the iteration limit. Details of implementation and a proof of
finite termination with TRW-S specifically are given in §D.

6. Experimental Evaluation
In the experiments we study how well we approximate

the maximum persistency [25], give a direct comparison to
the most relevant scalable method [29]3, illustrate the con-
tribution of different speedups and give an overall perfor-
mance comparison to a larger set of relevant methods. As
a measure of persistency we use the percentage of labels
eliminated by the improving mapping p

P
v2V |X

v

\p
v

(X
v

)|P
v2V(|X

v

|�1) 100%. (15)

Random Instances. Table 1 gives comparison to [29] and
[25] on random instances generated as in [25] (small prob-
lems on 4-connected grid with uniformly distributed inte-
ger potentials for “full” model and of the Potts type for
“Potts” model, all not LP-tight). It can be seen that our
exact Algorithm 1 performs identically to the "-L1 formu-
lation [25]. Although it solves a series of LPs, as opposed
to a single LP solved by "-L1, it scales better to larger in-
stances. Instances of size 20x20 in the "-L1 formulation are
already too difficult for CPLEX: it takes excessive time and
sometimes returns a computational error. The performance
of the dual Algorithm 2 confirms that we loose very little in
terms of persistency but gain significantly in speed.

3Note, [30] points out that numerical results published in [29] were
incorrect due to an implementation error, the results that we report are
consistent with [30].

39 / 47



Towards SDP/SOS Relaxations

Max-cut relaxation:

max
n∑

i,j=1

cij〈xi , xj〉 = 〈C ,XXT 〉

subject to 〈xi , xi 〉 = 1, i = 1, . . . , n

xi ∈ Rk , i = 1, . . . , n

max 〈C ,Y 〉
subject to Yii = 1, i = 1, . . . , n

rankY ≤ k

Y ∈ Rn×n

I k = 1: original (non-relaxed) max-cut problem
I k = n: SDP relaxation [Goemans and Williamson, 1995]

I Low-rank methods: Optimize directly over vectors xi !
[Burer and Monteiro, 2003], [Boumal et al., 2016]

Extension for boolean VCSP [Erdogdu et al., 2017] (optimized by ADMM-like algs.)
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[Pr̊uša and Werner, 2019] Pr̊uša, D. and Werner, T. (2019).
Solving lp relaxations of some np-hard problems is as hard as solving any linear program.
SIAM J. Optimization, 29(7):1745–1771.

[Rother et al., 2004] Rother, C., Kolmogorov, V., and Blake, A. (2004).
”GrabCut”: interactive foreground extraction using iterated graph cuts.
In SIGGRAPH, pages 309–314. ACM Press.

[Rother et al., 2007] Rother, C., Kolmogorov, V., Lempitsky, V. S., and Szummer, M. (2007).
Optimizing binary MRFs via extended roof duality.
In Conf. Computer Vision and Pattern Recognition, Minneapolis, USA.

45 / 47



References VI

[Schlesinger, 2007] Schlesinger, D. (2007).
Exact solution of permuted submodular MinSum problems.
In Conf. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), Ezhou, China, pages 28–38. Springer.

[Schlesinger and Flach, 2006] Schlesinger, D. and Flach, B. (2006).
Transforming an arbitrary MinSum problem into a binary one.
Technical Report TUD-FI06-01, Dresden University of Technology, Germany.

[Schlesinger and Flach, 2000] Schlesinger, M. I. and Flach, B. (2000).
Some solvable subclasses of structural recognition problems.
In Czech Pattern Recognition Workshop, pages 55–62. Czech Pattern Recognition Society.

[Shekhovtsov, 2016] Shekhovtsov, A. (2016).
Higher order maximum persistency and comparison theorems.
Computer Vision and Image Understanding, 143:54–79.

[Shekhovtsov et al., 2015] Shekhovtsov, A., Swoboda, P., and Savchynskyy, B. (2015).
Maximum persistency via iterative relaxed inference with graphical models.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 521–529.

[Shekhovtsov et al., 2018] Shekhovtsov, A., Swoboda, P., and Savchynskyy, B. (2018).
Maximum persistency via iterative relaxed inference in graphical models.
IEEE Trans. Pattern Anal. Mach. Intell., 40(7):1668–1682.

[Shlezinger, 1976] Shlezinger, M. I. (1976).
Syntactic analysis of two-dimensional visual signals in noisy conditions.
Cybernetics and Systems Analysis, 12(4):612–628.
Translation from Russian.

[Sontag and Jaakkola, 2007] Sontag, D. and Jaakkola, T. (2007).
New outer bounds on the marginal polytope.
In Neural Information Processing Systems, pages 1393–1400.

[Sontag et al., 2008] Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T., and Weiss, Y. (2008).
Tightening LP relaxations for MAP using message passing.
In Conf. Uncertainty in Artificial Intelligence, pages 503–510.

46 / 47



References VII

[Swoboda et al., 2014] Swoboda, P., Savchynskyy, B., Kappes, J. H., and Schnörr, C. (2014).
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