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End-to-End Research Approach
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Resource Constrained Interventions
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Queuing System / Waitlist: e.g., public housing,
kidneys for transplantation, costly treatments, etc.
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Resource Constrained Interventions

N

Social Network Based Interventions: e.g., suicide
prevention, substance abuse prevention, etc.
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Resource Constramed Interventions
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Social Network Based Interventions: e.g., suicide
prevention, substance abuse prevention, etc.



Resource Constrained Interventions
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Social Network Based Interventions: e.g., suicide
prevention, substance abuse prevention, etc.
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Permeating Themes

Heterogeneous Population
Heterogenous Resources

Socially Sensitive Settings
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Permeating Themes

Heterogeneous Population
Heterogenous Resources

Socially Sensitive Settings

11



Permeating Themes

Heterogeneous Population
Heterogenous Resources

Socially Sensitive Settings
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Permeating Themes

Heterogeneous Population

Fairneag &
Oeraonalization

Heterogenous Resources

Socially Sensitive Settings
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Outline

[_] Estimating Wait Times in Resource Allocation Systems

[_] Designing Policies for Allocating Scarce Resources

1 Preference Elicitation

] Policy Optimization

[_] Optimizing “"Gatekeeper Trainings” for Suicide Prevention
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End-Stage Renal Disease

source: https://www.usrds.org
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2 Terminal disease affecting >600,000 patients in U.S.

2 Dialysis vs. kidney transplant (preferred)

2 Living donors vs. deceased donors
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Organ Shortage

> 100k patients waiting

J

> 36k additions per year

> 19k transplants/year
2 13.4k (70%) from deceased donors

2 5.6k (30%) from living donors
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Organ Shortage

3-yr trend
2 100k patients waiting
7 36k additions per year
2 19k transplants/year
2 13.4k (70%) from deceased donors -I-ZO%
2 5.6k (30%) tfrom living donors ~27
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U.S. Kidney Allocation System

Patient
l& Information

Kidney
Information
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U.S. Kidney Allocation System

Kidney
Information

U.N.O.S.

2 Medical compatibility: blood group, weight, etc.
2 Geographic proximity (24-36 hours to transplant)

2 Point based: wait time, blood antigens: ~FCFS
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Wait ime Estimation

Personalized Estimates:

Patient X of blood type O is listed in a given
geographic region. He is currently ranked 50th. How
long until he receives an offer of a particular quality?
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Wait ime Estimation

Personalized Estimates:

Patient X of blood type O is listed in a given
geographic region. He is currently ranked 50th. How
long until he receives an offer of a particular quality?

2 Important for:
[V dialysis management
M planning of daily life activities

[V accept/reject decisions
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Wait Time Estimation

Personalized Estimates:

Patient X of blood type O is listed in a given
geographic region. He is currently ranked 50th. How
long until he receives an offer of a particular quality?

[nterpretability: Angwer in the Form of Quantiles!
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Challenges

2 Predicting accept/decline decisions is

already hard:

2 Kim et al 15: use all available historical

data, build series of prediction models
(log. reg., SVM, CART, RF); error rates
vary 22-47%
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Challenges

2 Predicting accept/decline decisions is
already hard:

2 Kim et al 15: use all available historical
data, build series of prediction models
(log. reg., SVM, CART, RF); error rates
vary 22-47%

2 In practice:

2 Incomplete information: other patients’
oreferences

\\\'4
W

> Unstable/ non-stationary system
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Multiclass Multiserver Queuing
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2 Multiclass, multiserver (MCMS) queuing system
2 Servers: resource types

2 Customer classes/queues: preferences
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MCMS under FCFS
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MCMS under FCFS
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2 o(v) arrival order of customer v € {1,...,> . A}
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MCMS under FCFS
il
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"" 2 = {2, 27, )

2O 6

2 o(v) arrival order of customer v € {1,...,) . A}
2 Wi (M,..., N, 0, 21, ..., Zr) clearing time of queue 1
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Robust Optimization
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Distribution Uncertainty Set




Model ot Uncertainty

2 Service times:

Xj—{ijjo :Zx?§—+F§(€)l/aj,£:1 ..... -
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Model ot Uncertainty

2 Service times:

X, = {xj cRY Y oak < — TR0, 0=1,...4

2 Population vector: n € PN N#

2 Arrival order: g € Z(n)
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Robust Wait Times

W;: maximize #;(ni,...,NK,0,%1,...,T\)
subject to n € PNNA
o € 2(n)
LE‘jGXj, 7=1,.... M
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Robust Wait Times

W;: maximize #;(ni,...,NK,0,%1,...,T\)
subject to n € PNNA
o € 2(n)

LEjGXj, 7 =1, M

NO-Hard!

B No tractable expression for #;

2 Lindley equations break down

B> Key idea: model assignment of servers to customers

P yij: ¢th service from server j assigned to class &
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Robust Wait Times

maximize w;
subject to Zyﬁj <1, Zy,ij < ng
€,J

k
14 14
Zyk’j > Tk
k' B
Wy < Cﬁ + Cf;gj

Wy ZC§—§(1—yﬁj)
(c,n) € uncertainty sets, (y, f) binary
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Performance: Accuracy

Estimation error vs simulation:
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Performance: Accuracy

Estimation error vs simulation:

Estimation error when true distribution # assumed:

simulation avg. abs. rel. ---

our avg. abs. rel. error
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Hierarchical MCMS

- @ 63
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P> Hierarchy across resource types

2 Server j provides jth ranked service

P> Induces “threshold-type"” customer preferences
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Hierarchical MCMS

- @ 63
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2 Nested structure enables to strengthen formulations

2 Robust wait time for service of any rank Wk

2 Problem remains NP-hard
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Scalable Heuristic

o o . 4
2 View so far: individual assignments Yy

2 Scales with n

2 Alternative view:

2 Aggregate assignments 1

2 Independent ot N
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Scalable Heuristic

?Q\§ . ° ° ° M E
2 View so far: individual assignments Yy,

2 Scales with n

2> Alternative view:

> Aggregate assignments 1M

R s A

> Independent of T

maximize w

m.
subject to w < —2 :Fi.g(mj)l/aj

o~ 3%

WK K K
S e < ng+ K —
k= k=
n &P
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Scalable Heuristic

?Q\§ . ° ° ° M E
2 View so far: individual assignments Yy,

2 Scales with n

2> Alternative view:

> Aggregate assignments 1M

R s A

> Independent of T

maximize w

m.
subject to w < —2 :Fi.g(mj)l/aj

o~ 3%

WK K K
S e < ng+ K —
k= k=
n &P
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Approximation Guarantee

2 W exact robust wait time

» Wik approximation

Let

(1 X\

X = Max < B
T Uy )

For a hierarchical MCMS system,

WKSWKSWKJFQX
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Approximation Guarantee

2 W exact robust wait time

» Wik approximation

Let

(1 X\

X = Max < B
T Uy )

For a hierarchical MCMS system,

WKSWKSWKJFQX
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Heuristic: Performance

Computation Times for Different HMCMS Instances

100 customers

10,000 customers

1,000 customers _

100,000 customers
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Heuristic: Performance

general MIP SOCP

100 customers 1 sec 0.8 sec
1,000 customers < 1 min 1.2 sec
10,000 customers 6 min 5.4 sec

100,000 customers 40 min <1 min

50 customers 1.9%
100 customers 0.85%
1,000 customers 0.08%

35



Application to the KAS

Personalized Estimates:

Patient X of blood type O is listed in a given
geographic region. He is currently ranked 50th. How
long until he receives an offer of a particular quality?
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Application to the KAS

Personalized Estimates:

Patient X of blood type O is listed in a given
geographic region. He is currently ranked 50th. How
long until he receives an offer of a particular quality?

2 PADV-OP1 Gitt of Life Donor Program
2 Threshold type decisions

2 Model as HMCMS

36



Data & Approach

v Qe [\

Training Data  Uncertainty Set SOCP

2 Well accepted kidney quality metric: KDPI
2 Historical kidney procurement rates (for each quality)

2 Historical patient accept/decline decisions

2z 2007-2010 training set
2z 2010-2013 testing set
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Out-of-Sample Performance

20000

99-percentile

~ 97-percentile
1500+ ~ |
- 95-percentile

~ 68-percentile

1000+ ~ average

500 r

time to first offer (in days)

0 20 40 60 30 100

patient rank
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Out-of-Sample Performance

2 Relative prediction errors
2 14.96% tor avg. and 11.73% for 68-percentile
2 Delay history estimator:

2 Uses personalized info unavailable in practice

P Cannot estimate wait times for high ranks

2 Relative prediction errors of delay history estimator:

2 16.76% tor avg. and 14.65% for 68-percentile
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Outline

M Estimating Wait Times in Resource Allocation Systems

[_] Designing Policies for Allocating Scarce Resources

1 Preference Elicitation

] Policy Optimization

[_] Optimizing “"Gatekeeper Trainings” for Suicide Prevention
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Partner

LOS ANGELES

ﬂ}? HOMELESS

SERVICES

Eric Rice
CAIS Director
USC School of SW
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Homelessness Crisis
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Homelessness Crisis

HOMELESS: TOTAL 50K HOUSING: TOTAL 39K

B

7
¥
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L
%

LOS ANGELES

ﬂiﬁ’ HOMELESS

Housing SERVICES

i 58% BN AUTHORITY
75%
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Homelessness Crisis

HOMELESS: TOTAL 50K HOUSING: TOTAL 39K
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LOS ANGELES

ﬂiﬁ’ HOMELESS

Housing SERVICES

i 58% BN AUTHORITY
75%

22K
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Current Policy

Vulnerability Score

A. History of Housing and Homelessness

1. Where do you sleep most frequently? (check one)

O Shelters [ Couch surfing I Other (specify):
O Transitional Housing [ Outdoors
[ Safe Haven [0 Refused
IF THE PERSON ANSWERS ANYTHING OTHER THAN “SHELTER”, “TRANSITIONAL HOUSING”, =~ SCORE:
OR “SAFE HAVEN", THEN SCORE 1.
2. How long has it been since you lived in permanent stable O Refused
housing?
3. In the last three years, how many times have you been [ Refused
homeless?

IF THE PERSON HAS EXPERIENCED 1 OR MORE CONSECUTIVE YEARS OF HOMELESSNESS, SCORE:
AND/OR 4+ EPISODES OF HOMELESSNESS, THEN SCORE 1.

Vulnerability Calculated using Scoring Rule
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Current Policy

Vulnerability Score

Permanent Supportive

Housing (PSH)

Rapid ReHousing (RRH)

Services only
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Current Policy

Vulnerability Score

Rapid ReHousing (RRH)

Services only
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Proposed System

Open World

Policy-Makers at LAHSA

Preference HMIS
Elicitation Data

@ Preference Learning @ Fair Counterfactual ML

Learned Learned
Moral Priorities Outcomes

@ Policy Design

Intervention

£ :
o .
I
>
v .
3

Homeless Population




Outline

[V Estimating Wait Times in Resource Allocation Systems

[_] Designing Policies for Allocating Scarce Resources

[1 Preference Elicitation

] Policy Optimization

[_] Optimizing “"Gatekeeper Trainings” for Suicide Prevention
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Policy Desiderata

# Days
Drug User? Homeless > 365?

*a faln

5 Points 15 Points 12 Points 28 Points

Il =
||. ] | U | lell Y hY B

Fairness Efficiency Interpretability
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Policy Desiderata

| ‘ [ 1 ] II_EI
48 48 48 JL Yy
h RS R v N Ry

P

Fairness Efficiency Interpretability

—

“Thig ie the burning iseue for ug!”
— Policy Supervisor at LAHSA —
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Eliciting Moral Priorities

Outcome A Outcome B
Probability of successful Probability of successful
exit from homelessness exit from homelessness

100%
50%
0%
x@ o <O
\
&‘0 @\0 \:5\,\

B> Can ask pairwise comparisons:

- "Do you prefer the policy A or policy B?"

48



Eliciting Moral Priorities

Outcome A PNtcome B

Probability of successful
exit from homelessness

~ y of successful
Womelessness

A\
100%

50%

B> Can ask pairwise comparisons:

- "Do you pretfer the policy A or policy B?”
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Eliciting Moral Priorities

Outcome A Outcome B
Probability of successful Probability of successful
exit from homelessness exit from homelessness
100%
50%
0%
& o 5
2 Can ask how much they like a policy: © 2 o
1 M ’?II ®m©
- "How do you feel about policy A* o

49



Eliciting Moral Priorities
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Eliciting Moral Priorities

il JL[JI -

2 Huge number of policies we can ask about

2 Limited time (very under-resourced setting)

2 Which guestions to ask to gain the most useful information?

50



Robust Optimization
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Distribution Uncertainty Set




clicriting Moral Priorities

Uo Utility of policy with features @

|

u(@) =u ¢
v

Features of a polic
uy policy

Uncertain vector of

utility function coefficients

Uncertainty Set

{5 e |0, 1]I : du € |1, 1]‘] such that &; =

u' @ + max |1
_ V& el
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clicriting Moral Priorities

Uo Utility of policy with features @

u(@) =u ¢
T ®
" Features of a policy

Uncertain vector of

utility function coefficients

2 U is unknown and cannot be observed directly

2 Answer &; to question i € Z is unknown; only be revealed if we
choose to spend some of our budget/time to ask that question
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clicrting Moral Priorities

Uo Utility of policy with features @

u(@) =u ¢
T ®
" Features of a policy

Uncertain vector of

utility function coefficients

2 U is unknown and cannot be observed directly

2 Answer &; to question 7 € Z is unknown; only be revealed if we
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cliciting Moral Priorities

Uo Utility of policy with features @

‘ |

> Features of a polic
uy pPolicy

Uncertain vector of

utility function coefficients

2 U is unknown and

2 Answer &; to question 7 € Z is unknown; only be revealed if we
choose to spend some of our budget/time to ask that question
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Static Elicitation

here-and-now: observe: wait-and-see:

decide which answers to offer a policy that

policies to ask about questions meets the needs
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Static Elicitation

here-and-now: observe: wait-and-see:

decide which answers to offer a policy that
policies to ask about questions meets the needs

Two-Stage Robust Optimization with

Decision-Dependent Information Discovery

56



Adaptive tlicrtation

4

decide observe il decide

observe

question answer question answer

o7



Adaptive tlicrtation

decide observe decide observe

question answer question answer

Multi-Stage Robust Optimization with

Decision-Dependent Information Discovery

o7



Two-Stage RO with DDID

Sequence of Events:

—t——+ »

rhere—and—now:) [ observe: W [ wait-and-see: |
w e W C{0,1}" €=
\ J J W,

Example:
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Two-Stage RO with DDID

Sequence of Events:

—t——+ »

rhere—and—now:) [ observe: W [ wait-and-see: |
we W C {0,1}" £EE

\ W, _J W,
Example:

NI{TIR{ I

i !

il
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Two-Stage RO with DDID

Sequence of Events:

—t——+ »

rhere—and—now:) [ observe: W [ wait-and-see: |
we W C {0,1}" £EE

\ W, _J W,
Example:

20 2| !

| 2 &, : utility of policy 4
;H IlLllLl

T : 2 If no question asked:

il §=woé = (0,0,0,0,0)

58




Two-Stage RO with DDID

Sequence of Events:

—t——+ »

rhere—and—now:) [ observe: W [ wait-and-see: |
we W C {0,1}" L £EE
\ W, _J W,
Example:

&1/l & &3

]

i}

i

i

||

]

2 &, : utility of policy i
2 If ask utility of policies 1, 2, 3:

5:UJO€: (517‘527‘537070)
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Two-Stage RO with DDID

Modeling with Dynamics:
——+——+ »

r ~ — )
here-and-now: | observe: wait-and-see: | observe:
Tr & X 5 — —
€ Z(w) yec)y £ €=Z(w,H)
w €W
q Y q y q y
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Two-Stage RO with DDID

e —— E————————

( \ R (. 1 h
here-and-now: observe: wait-and-see: observe:
€Tr & X 5 — —
€ Z(w) yec)y £ €=Z(w,H)
we W
- y - ) - )

» Projection onto space of observed uncertainties:

Z(w) ={6 e RYs : 3¢ € = with 6 = w o &}
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Two-Stage RO with DDID

———+——+ »

( \ R (. 1 h
here-and-now: observe: wait-and-see: observe:
€Tr & X 5 — —
€ Z(w) yec)y £ €=Z(w,H)
we W
- y - ) - )

Projection onto space of observed uncertainties:

Z(w) ={6 e RYs : 3¢ € = with 6 = w o &}

Subset compatible with observed uncertainties:

=(w,0) ={£€=Z : wo€&=wod}
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Two-Stage RO with DDID

Modeling with Dynamics:
——+——+ »

a ) a . \ )
here-and-now: observe: wait-and-see: observe:
Tr & X 5 — —
€ Z(w) yec)y £ €=Z(w,H)
w €W
" y " y " y

- Problem Formulation ~

minimize  max min max &'Cx+€& ' Dw+£'Qu
zeX, welW JeE(w) ye¥y Ee=(w,))

st. Tex+Vw+Wy+ < h(§) VEeZ(w,d)
- _J
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Two-Stage RO with DDID

Modeling with Dynamics:
——+——+ »

~ ~ — ~
here-and-now: observe: wait-and-see: | observe:
Tr & X 6 — —
€ Z(w) ye)y £ € =(w,o)
w €W
- y - y - y

- [
B Fominin AT

minimize max min max &' Cx+&'Dw+¢£'Qy
rxeX, welVV Je=E(w) ye¥V Ege=E(w,d)

st. Tx+Vw+ Wy+ < h(§) VEeZE(w,d)
\— _J
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Two-Stage RO with DDID

Modeling with Dynamics:
——+——+ »

~ ~ — ~
here-and-now: observe: wait-and-see: | observe:
Tr & X 5 — —
€ Z(w) yec)y £ €=Z(w,H)
w €W
- y - y - y

| - Correct!
i e .

minimize  max min max &'Cx+€& ' Dw+£'Qu
zeX, welW JeE(w) ye¥y Ee=(w,))

st. Tex+Vw+Wy+ < h(§) VEeZ(w,d)
- _J
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RO with DDID: K-Adaptability

—tt——+ »

\

-
here-and-now:

reX
w e W

\ J

observe:

0 € Z(w)

~

r °
wait-and-see:

yey

\

observe:

£ € E(w,9)

~

1 Exogenous uncertainty: Hanasusanto et. al (2015), Caramanis and Bertsimas (2010)



RO with DDID: K-Adaptability

—tt——+ »

\

-
here-and-now:

recX
w e W
\_ Y
_I_

4 1 N
y €y
y’cy
yt ey

\_ )

observe:

0 € Z(w)

~

r °
wait-and-see:

yey

\

observe:

£ € E(w,9)

~

1 Exogenous uncertainty: Hanasusanto et. al (2015), Caramanis and Bertsimas (2010)



RO with DDID: K-Adaptability

—tt——+ »

\

-
here-and-now:

recX
w e W
\_ Y
_I_

4 1 N
y €y
y’cy
yt ey

\_ )

observe:

0 € Z(w)

~

r °
wait-and-see:

kel

\

observe:

£ € E(w,9)

~

1 Exogenous uncertainty: Hanasusanto et. al (2015), Caramanis and Bertsimas (2010)



RO with DDID: K-Adaptability

—-l———l———l———i—l§>

here and-now: | observe: wa|t and-see: observe:
rec X
w e W d € Z(w) kel € e Z(w, o)
yF ey kek
_ y _ y J _ J
~ K-Adaptability Problem ~
. : T T Tk
C D
g e, i ) €7Ce+¢TDw+ETQy
{'ykéy}k@c

st. Tx+Vw+ Wyt <h(é) VEcZE(w,d)

\_ J
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RO with DDID: K-Adaptability

—-I———I———l———i—l§>

here and-now: | observe: wa|t and-see: observe:
rec X
w e W d € =(w) ke £ e=(w,d)
yF ey kek
_ y _ y J _ J
~ K-Adaptability Problem ~
. : T T Tk
C D
ipimize, maxomim max L Oz Dwt o Qy
{'ykéy}k@c
st. Tx+Vw+ Wyt <h(é) VEcZE(w,d)
\_ Y,
O J

- — —— — -
[ractability?
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Objective Uncertainty
QL </ cpabilty: MILP Reformulaiion

minimize b' B+ Z b' 3"
kel
subject to = € X, w e W, {y"}rex

acRE, BeRE BFeRE AR eRNe kel

ela=1
AT +wort =ay (Czx+ Dw+ Qy*) Vkek
A3 = Zwo'yk

kelC
Tx +Vw+ Wyk < h

The size of this problem is

polynomial in the size of the input
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Two-Stage RO with DDID
- ~

minimize max  min max &' Cx+ &' Dw+ £'Qy"
reX, weWw deE(w) kek ge=(w,d)
{ykéy}k:elc

st. Tx+Vw+Wy* <h(é) VEeZ(w,d)

\_ J

Objective Uncertainty Constraint Uncertainty

Equivalent reformulation Approximate reformulation

Polynomial MILP for fixed K Exponential in K

Polynomial in K

66



Two-Stage RO with DDID
- ~

minimize max  min max &' Cx+ &' Dw+ £'Qy"
reX, weWw deE(w) kek ge=(w,d)
{ykéy}k:elc

st. Tx+Vw+Wy* <h(é) VEeZ(w,d)

\_ J

Objective Uncertainty Constraint Uncertainty

Equivalent reformulation Approximate reformulation

Polynomial MILP for fixed K Exponential in K

Polynomial in K

(eneralizes K-adaptability to DUID
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Two-Stage RO with DDID

-

minimize
xeX, wew
{yk EYV}kex

-

max
deE(w)

K-Adaptability Problem

min
kelC

S.t.

max {max E1Cx + £'D'w + £ Qy"
£eE(w,9) €1

Tx +Vw+ Wyt <h

~

}

J

Piecewise Linear Convex Objective

Equivalent reformulation

Exponential in K

Efficient column-and-constraint generation

67




Two-Stage RO with DDID
- ~

minimize max  min max max &' Clz+ &' D'w + £'Q'y"
rceX, wew de=(w) kek €e€=2(w,d) €1

{y"eVrex
st. Tx+Vw+Wyk<h

_ J

Piecewise Linear Convex Objective

Equivalent reformulation

Exponential in K

Efficient column-and-constraint generation

Beneralizes K-adaptability to nonlinear objective
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Max-Min Utlility

maximize  min max min
yey | teE(w,§)

subject to

68



Max-Min Utility Synthetic Data
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Probability that Random Questions Outperform K—adaptability Solution (%)
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Min-Max Regret

MINIMIZE,,,c)yy  Max min  max {max Ei — ST?J}
EcE YEY ¢eB(w,€)

1€L
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Min-Max Regret Synthetic Data

Worst—Case Regret
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Min-Max Regret Synthetic Data

Probability that Random Questions Outperform K—adaptability Solution (%)
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Min-Max Regret LAHSA Data

Including current policy, random allocation, FCFS

Used real data from HMIS

23 features that characterize fairness, efficiency, interpretability
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Min-Max Regret LAHSA Data

Simulated the outcomes of 20 policies, including:

Including current policy, random allocation, FCFS

Used real data from HMIS

23 features that characterize fairness, efficiency, interpretability
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lowards Real-VWorld Deployment

Preference elicitation Welcome, user1  Logout POLICY A

You have chosen to answer the Adaptive Questionnaire.

Choose one of the two policies (Policy A or Policy B) that most suit your preference. The outcomes of each policy are represented as percentages of Success and
Failure. Each time a preference is submitted, new policy outcomes are displayed under Policy A and Policy B

CHANCE OF EXITING HOMELESSNESS
OVERALL PERCENTAGE OF SUCCESS

Your choice matters...

The questionnaires are designed to learn your preferences by displaying outcomes of different policies and learning your choices.
New policy outcomes are displayed after each choice you make. Choosing the static questionnaire will ask you questions that were
asked to other policy makers. The adaptive questionnaire is tailored to ask questions based on your previous choices. You could
choose to answer the Static or Adaptive questionnaire by clicking on the button below.The quiz starts as soon as you click it. [ ere=sCEd [ Rlnsess B Success: 84% [ Fallure: 3%

Thank you for helping us make a difference!
Enter the number of questions you want to be asked (between 1and 20): SUBMIT
Adaptive Questionnaire

POLICY

SUCCESS BY GENDER

100 100

LOS ANGELES

ﬁf@ HOMELESS 35

SERVICES

Percentage of Success.
Percentage of Succoss.

Male Female Other

SUCCESS BY RACE

100 100

Percentage of Success

Percentage of Success.

r

£

20

10

Black Hisoanic: White Black. Hisoanic Whte Other

/0



Outline

[V Estimating Wait Times in Resource Allocation Systems

[_] Designing Policies for Allocating Scarce Resources

' Preference Elicitation

[1 Policy Optimization

[_] Optimizing “"Gatekeeper Trainings” for Suicide Prevention
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System Model

2 Features of house: .%#; € R"b
2 Features of the youth: ¥, € R™
2 Youth eligible for house if and only if: ¥, € M(.%},)

/8



System Model

2 Probability of successful outcome with house:
p(%y, ggh)
2 Probability of successful outcome without house:

p(9y)

79



Parametric Scoring Policies

2 Parameter vector: 8 € R"

& Score for particular matching: m3(%,, 1)

2 Youth Y has priority over youth y' if:
m3(Gy, Fn) > 73(Gy s Fn)

80



Parametric Scoring Policies

ik -

2 Parameter vector: 0§ € R" /_\ choeen bg ueer

& Score for particular matching: m3(%,, 1)

2 Youth Y has priority over youth y' if:
m5(Gy, Fn) > 1Yy s Fn)
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Parametric Scoring Policies

ik -

2 Parameter vector: 0§ € R" /—\ choeen bg ueer

2 Score for particular matching: 73

& Youth y has priority over youth ¥’ if: opﬁmize!
m8(Gy, Fn) > 18(Gy, Fn)

80



Interpretable Policies

Age > 18?

# Days
Homeless > 365?

Drug User’?

rEw [

5 Points 15 Points 12 Points 28 Points

2 Linear policies

2 Decision-tree based policies with linear leating/branching

81



Fair Policies



Fair Policies

2 Probability of successful outcome

should be independent of one’s
race
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Fair Policies

2 Probability of successful outcome

should be independent of one’s
race

2 Probability of successtul outcome
should be independent of one’s

gender
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Fair Policies

2 Probability of successful outcome
should be independent of one’s
race

Probability of successful outcome
should be independent of one’s
gender

Probability of successful outcome
should be independent of one’s
vulnerability score

\
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Fair Policies

2 Probability of successful outcome

should be independent of one’s

race
Freedom to e
2 Probability of successful outcome
(ncorporafe should be independent of one’s
Beneral Criterial gender

m 2 Probability of successful outcome

should be independent of one’s
vulnerability score

82



Data-Driven Optimization

maximize S: S‘ PyhZTyh + Dy (1 - Z xyh)

yeY LhecH hecH

subject to Tyh = 78(9y, fn), Yy €Y, heH

VyeY, heH,

Tyn =19 Vy' : (v',h) € C and Z Ty =0,

(Wyh > 7Ty’h) or (7Tyh — Ty’h and Py > py/)

\ /

BeB, xelF, z,,c{0,1}VyeVY, heH.

83



Proposed Solution Approach

maximize Z Z PynTyh + D, (1 — Z th)

yeY LheH heH
subject to Z Ty <1 Vye, nyh <1 VheH
heH yeyY

2y =0 VYyeY, heH : (y,h) ¢C
xeF, z,,>0 Vyc¥Y, heH

> Matching augmented with fairness constraints

F:={x: Ax < b}

" Talluri and van Ryzin, MS 1998
Bertsimas and Trichakis, OR 2013 84



Proposed Solution Approach

Equivalent to:

maximize Z Zpyhxyh + D, (1 — Z xyh) ~ AN Az + 2D

yeY LheH

subject to nyhgl Vy € Y, nyhgl Vh € H
heH yeyY

ry, =0 VyeY, heH : (y,h)¢C
zyn >0 VyeY, hell

Detine: Oyh .— Pyh — Fy — (ATA)(y,h)

" Talluri and van Ryzin, MS 1998
Bertsimas and Trichakis, OR 2013 85



Approximate Solution Approach

minimize Z Z Cyn — Tyn

yeY heH

subject to  m,n = m5(gy, fy)

2 An LP for linear policies
2 A large scale MILP for decision-tree based policies

2 Nice decomposable structure: solve using Bender's
decomposition
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Fairness Across Races

TAY -
Random-
Linear Regression -

Logistic Regression -

Policy

Decision-Tree LL (K=1) RF-
Decision-Tree LL (K=2) RF-
Decision-Tree RF -

Linear EF -

CART-

Linear RF -

Benchmarks

Proposed

0%

All Youth

20%

40%

60% 0%

20%

By Race

40%

Probability of Success

2 Proposed policy mitigates 72 % of racial bias

87

60%

Race

| White
W Other
B Hispanic
" Black
LAl
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Fairness Across Races

TAY -
Random-
Linear Regression -

Logistic Regression -

Policy

Decision-Tree LL (K=1) RF-
Decision-Tree LL (K=2) RF-
Decision-Tree RF -

Linear EF -

CART-

Linear RF -

Benchmarks

Proposed

0%

All Youth

20%

40%

60% 0%

20%

By Race

40%

Probability of Success

2 Proposed policy increases efficiency by 16%

388

60%

Race

| White
W Other
B Hispanic
" Black
LAl

R



Towards Real World Deployment

LOS ANGELES
HOMELESS
SERVICES
AUTHORITY

B M
} -
SUCCESS BY RACE

89

POLICY A

YYou have chosen to answer the Adaptive Questionnaire.

Choose one of the two policies (Policy A or Policy B) that most suit your preference. The outcomes of each policy are represented as percentages of Success and
Failure. Each time a preference is submitted, new policy outcomes are displayed under Policy A and Policy B

CHANCE OF EXITING HOMELESSNESS
OVERALL PERCENTAGE OF SUCCESS

B Success: 64% M Failure: 36% 1 Success: 64% [ Fallure: 36%




Outline

M Estimating Wait Times in Resource Allocation Systems
M Designing Policies for Allocating Scarce Resources
V] Preference Elicitation

M Policy Optimization

[1 Optimizing "Gatekeeper Trainings” for Suicide Prevention
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Partner

Anthony Fulginiti
UNIVERSITY o

DENVER

Assistant Professor

DU School of Social Work
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Alarming Rates of Suicide

2 Suicide is the tenth leading cause of death overall

2 Suicide is the fourth leading cause of death among ages 35-54

P> Second |leading cause of death among ages 10-34!

2 In 2016, nearly 45,000 people died by suicide in the U.S.

National Health Care for the Homeless Council, Fact Sheet, 2018



A Personal Motivation

Not enrolled
UGs + Gs :
UGs only : full-time,
combined
ages 18-22

attempted suicide

P> Suicide is the leading cause of death among college

and university students!

Suicide Prevention Resource Center 03



‘Gatekeeper’ Iraining

St 2 Most popular suicide prevention

Persuade.

program

» Conducted among college
students, military personnel, etc.

PRE\IENTION 2 Trains "helpers” to identify

warning signs of suicide and how

;mm_ to respond

SUICIDE

PREVENTION
LIFELINE

1-800-273-TALK (8255)

suicidepreventionlifeline.org

94



"Gatekeeper’” Iraining

2 Most popular suicide prevention
program

» Conducted among college
students, military personnel, etc.

2 Irains "helpers” to identity

warning signs of suicide and how
to respond

I—

Can we leverage

eocial hetwork information?

94



Challenges



Challenges

2 Uncertainty in availability and
performance of students
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Challenges

2 Uncertainty in availability and
performance of students

2 In practice: limited data to inform node
availability

95



Challenges

2 Uncertainty in availability and
performance of students

> In practice: limited data to inform node
availability

2 Combinatorial explosion in number of
scenarios

95



Intervention Model

Known social network: | G = (N, &)

o — T

96



Intervention Model

Train as a monitor:

T, = 1

97



Intervention Model

Train as a monitor: Available:

Tn, = 1 En =1

98



Intervention Model

Train as a monitor: Available: Covered:

Ty = 1 En = 1 Yn(x, &) =1

99



Intervention Model




Intervention Model




Intervention Model

max min Fg(x, &) where Fg(x,§) : Z Yn (T, &)
rcX EcZ N

Applying existing algorithm to Social Networks of
Youth Experiencing Homelessness?

102



Existing Greedy Algorithm

Network : Percentage Covered by Racial Group
ize

Greedy Algorithm: Tzoumas et al. Resilient monotone submodular function maximization



Existing Greedy Algorithm

Network c: Percentage Covered by Racial Group
ize

== > Digeriminatory Coverage!

Greedy Algorithm: Tzoumas et al. Resilient monotone submodular function maximization



Intervention Model

max min Fg(x, &) where Fg(x,§) : Z Yn (T, &)
rcX EcZ N




Intervention Model

Robust Covering

max min Fg(x, &) where Fg(x,§) : Z Yn (T, &)
zEX Le= neN

Robust Covering with Fairness Constraints

Vee(C, VE e &

where Fg .( Z Yn(x, &)

neN.




Price ot Fairness

PoF(G,I,J) =1 —

OPTfair (g’ [7 J)

OPTtotal (g7 [) J)

OPTfair(g, I, J): optimal value of fair robust covering
OPTtOta’l(Q, I, J): optimal value of robust covering

105



Price ot Fairness

PoF(G,I,J) :=1—

OPT™*(G,I,J)

OPT™"™(G, I,.J)

Deterministic Case:

2 Given any € > 0, there exists G such that:

PoF(G,1,0) > 1 —¢
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Price ot Fairness

PoF(G,I,J) :=1—

OPT™*(G,I,J)

OPTtOtal (g7 [7 J)

Deterministic Case:

2 Given any € > 0, there exists G such that:

PoF(G,1,0) > 1 —¢

2> DoF can be arbitrarily bad!

106



Expected Price of Fairness

Estimate of Expected Price of Group Fairness

 Egussm[OPT™"(G, T,.7)

EQNSBM [OPTtOtal(ga ]7 J)]

7. —ry —0.1 7:0.2“ ’y=03—fy=04
1.5 4

S <

~ ! \ §

s ! =

I \ S
051 ™ =

100 200 300 400 500 100 200 300 400 500
Relative Community Size Relative Community Size

We obtain analytical expressions for the
expected PoF on SBM networks
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Tractable Retformulation

Single-Stage Nonlinear Robust Formulation:

s.t. Fge(x, &) > W|N:| Veel, VEeZ=
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Tractable Retformulation

Single-Stage Nonlinear Robust Formulation:

s.t. Fgc(x, &) >WIN: Veel, VEeZ=

108



Tractable Retformulation

' a LYy < T, VneN 3.
mx?my{zy s 2 b }

neN ved(n)

where

Vi={ye{0,1}V: > y,>W|N|VceC}
neN,




Tractable Retformulation

. k k
max min ma E < E LTy, Vn €N
" e ke% { In = In = S }

neN veod(n)




Tractable Reformulation

K-Adaptability Approximation:

: k .k
aX min ma E oy < E LTy, Vn e N
Has e ke% { In = In = S }

neN ved(n)
st. xeX, y,.... yt ey

Equivalent to MILP of polynomial size for any fixed K
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Tractable Reformulation

K-Adaptability Approximation:

: k .k
aX min ma E oy < E LTy, Vn e N
Has e ke% { In = In = S }

neN ved(n)
st. xeX, y,.... yt ey

Equivalent to MILP of polynomial size for any fixed K

S B — U
Generalizes K-adaptability to discrete uncertainty getg

110



Numerical Results

Min Coverage (%)

20 30 40 50
Coverage of the Worse-off Group (%)

Greedy Algorithm: Tzoumas et al. Resilient monotone submodular function maximization



Numerical Results

Network Improvement in Minimum Percentage Covered

Name J=0|J=1|J=2J=3|J=4|J =5
PY
PY2
PY 3
MFP1
MFP2




Numerical Results

Network Price of Fairness (%)

Name J=1J=2J=3|J=4
PY 1
PY?2
PY3
MFP1
MFP2




Towards Real World Deployment

Living'te Love USC University of

Southern California

nother Day

NICHOLAS H. CUY ACEVEDO MEMORIAL TRUST
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Outline

M Estimating Wait Times in Resource Allocation Systems
M Designing Policies for Allocating Scarce Resources

V] Preference Elicitation

M Policy Optimization

V] Optimizing “"Gatekeeper Trainings” for Suicide Prevention
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Open Questions

Fair Counterfactual Unknown Social Multi-Stakeholder
Policy Learning Networks Preferences

Robust Policies Conservation
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Open Questions

R — E— S — T

Fair Counterfactual Unknown Social Multi-Stakeholder
Policy Learning Networks Preferences

Robust Policies Conservation
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Open Questions

| — — S —— —

Fair Counterfactual Unknown Social Multi-Stakeholder
Policy Learning Networks Preferences

Robust Policies Conservation
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Open Questions

| — — S —— —

Fair Counterfactual Unknown Social Multi-Stakeholder
Policy Learning Networks Preferences

Robust Policies Conservation
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en Questions

| — — S —— —

Fair Counterfactual Unknown Social Multi-Stakeholder
Policy Learning Networks Preferences

Robust Policies Conservation
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en Questions

| — — S —— —

Fair Counterfactual Unknown Social Multi-Stakeholder
Policy Learning Networks Preferences

Robust Policies Conservation
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Students & CAIS Fellows

USC BhD
Studentg

CAIS

Qummer

Duncan Naveena Jennifer Hau

Fellowg
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Thank youl!

phebe.vayanos@usc.edu
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