
Oct. 3, 2019Oct. 3, 2019 CP 2019 TutorialCP 2019 Tutorial © 2019 IBM Corporation© 2019 IBM Corporation

Planning/Scheduling with CP Optimizer

Philippe Laborie
IBM, IBM Data & AI
laborie@fr.ibm.com

2 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Planning/Scheduling with CP Optimizer

Overview of CP Optimizer

Typical applications

Modeling concepts

Automatic search

Performance

Tools

3 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Overview of CP Optimizer

Developed by ILOG/IBM since 2007

Focus on industrial / real life optimization problems

Targeted audience goes beyond CP experts:
OR experts
Data scientists
Software engineers

The CP Optimizer approach: Model & run
Declarative mathematical model

Introduction of adequate mathematical concepts for
formulation of scheduling problems (optional intervals,
functions, permutations)

No need to worry about the resolution
Exact algorithm using hybrid methods
Good out of the box performance for real world problems

4 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Overview of CP Optimizer

As a result, CP Optimizer is quite an atypical CP solver:
Focus on Model&Run:

Search extension (user-defined constraints and search) is not
encouraged (though it is possible of course)
Few search parameters

Few types of constraints / global constraints

More types of variables and expressions due to the
introduction of intervals, functions, sequences

5 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Overview of CP Optimizer

As a result, CP Optimizer is quite an atypical CP solver:

Big focus on optimization problems (vs feasibility)

Many other ingredients than “plain” CP in the automatic
search (e.g. linear relaxation)

CP Optimizer is not “just” an exact algorithm … it also
transparently embeds, under the hood, a lot of meta-
heuristic search
We view computing good solutions and computing bounds
as two (almost) separate questions to be addressed by
different techniques

6 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Overview of CP Optimizer

CP Optimizer
model

C++

OPL

Python

Java

C# On cloud

Local

...

Solve

7 / 65 CP 2019 Tutorial © 2019 IBM Corporation

A counter-example of industrial scheduling problem

The classical job-shop scheduling problem

Resource/machines are over-simplified
In reality: setup-times, activities incompatibilities, batching,
cumulative resources, inventories (reservoirs), execution
conditions (e.g. resource safety levels),...

All operations are performed in a unique way
In reality: resource allocation, optional operations,
alternative recipes, hierarchical decomposition

The makespan objective function is completely unrealistic
In reality: combination of earliness/tardiness costs, non-
execution cost, resource related costs, constraint violation, …

Real problems are often much larger than the size of
current benchmarks

8 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Some recent scheduling applications

Automated robotic
cloud in life sciences

Semiconductor wafer fabs

Aircraft assembly Container terminalsSatellite observations

Integrated facility
management

9 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Some recent scheduling applications

Automated robotic
cloud in life sciences

Semiconductor wafer fabs

Aircraft assembly Container terminalsSatellite observations

Integrated facility
management

Complex objectives:
resource costs,

tardiness, throughput

Complex constraints:
activities, resources

Overconstrained Ill-defined

Large
(e.g. 1000000 tasks)

Require fast
solving time

Heterogeneous
decisions

10 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Modeling concepts

Claims:

Both Math Programming (MILP) and classical CP are not
using the right abstractions to model scheduling
problems

Numerical decision variables alone (integer, floating
point) make it hard to capture the essence and the
structure of scheduling problems … (even with a
catalogue of more than 400 global constraints in CP)

It’s missing the essential ingredient of scheduling: time

Interestingly, time is a very relevant topic in AI
Temporal reasoning
Reasoning on action and change
AI Planning

11 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Time in AI: examples

Allen’s interval algebra (1983)

Temporal constraint networks (1991)

12 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Time in AI: examples

Temporal planning in PDDL 2.1 (2003)
 (define (domain jug-pouring)
 (:requirements :typing :fluents)
 (:types jug)
 (:functions
 (amount ?j - jug)
 (capacity ?j - jug))
 (:action pour
 :parameters (?jug1 ?jug2 - jug)
 :precondition (>= (- (capacity ?jug2) (amount ?jug2)) (amount ?jug1))
 :effect (and (assign (amount ?jug1) 0)
 (increase (amount ?jug2) (amount ?jug1)))
)

?jug1

?jug2

time

amount
pour(?jug1,?jug2)

13 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Time in AI: examples

MILP and classical CP models only deal with numerical
values (x∈)

A set of other simple mathematical concepts seem to
naturally emerge when dealing with time:

Intervals : a = [s,e) = { x∈ | s≤x<e }
Functions : f: →

Permutations
Occurrence / non-occurrence of an event : optional interval

ℝ

ℝ

ℝ ℤ

14 / 65 CP 2019 Tutorial © 2019 IBM Corporation

What is CP Optimizer ?

What if we exploit the flexibility of CP to integrate these
mathematical concepts in the model …

… and use all the good ideas of MILP solvers:
Model & run
Exact algorithm
Input/output file format
Language versatility (C++, Python, Java, C#, OPL)
Modeling assistance (warnings, …)
Conflict refiner
Warm-start
…

That’s exactly what CP Optimizer is about !

15 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer for scheduling in two sentences

A mathematical modeling language for combinatorial
optimization problems that extends MILP (and classical CP)
with some algebra on intervals, sequences and functions
allowing compact and maintainable formulations for
complex scheduling problems

A continuously improving automatic search algorithm
that is complete, anytime, efficient (e.g. competitive with
problem-specific algorithms on classical problems) and
scalable

16 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer timeline

Performance

201320122011201020092008 2014 2015 2016 2017 2018

Automatic
solution
search

Interval-based
scheduling
language

Scheduling
relaxations
with CPLEX

Lexicographic
multi-criterion
optimization Starting solution

Presolve

Modeling
assistance

Objective
bounds

Determ.
parallel
solving

2019

Objective landscapes

Failure-Directed
Search

KPIs

Backtrack explainer

“Strong” constraints

Infeasibility explainer Iterative diving

17 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Example: extended flexible job-shop scheduling

Set of n operations oi to be scheduled on a set of machines

Precedence constraints between operations

An operation oi needs to be allocated on a machine k in a
set Fi qualified for executing the operation

Operation’s duration pik depends on selected machine k

Machines can only perform one operation at a time

Objective is to minimize the makespan

18 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer for scheduling – Interval variable

Interval variables

What for?
Modeling an interval of time during which a particular
property holds (an activity executes, a resource is idle, a tank
must remain empty, …)

Example:
dvar interval x in 0..1000000 size 100..200;

0 1000000

Time

[100,200]

x

19 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer for scheduling – Interval variable

dvar interval x in 0..1000000 size 100..200;

Properties:
The value of an interval variable is an integer interval
[start,end)
Domain of possible values: [0,100), [1,101), [2,102),...
[999900,1000000), [0,101),[1,102),...
Domain of interval variables is represented compactly inside
CP Optimizer (a few bounds: smin, smax, emin, emax, szmin,
szmax)

0 1000000

Time

[100,200]

x

20 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer for scheduling – Interval variable

Optional interval variable

Interval variables can be defined as being optional that
is, it is part of the decisions of the problem to decide
whether the interval will be present or absent in the
solution

What for?
Modeling optional activities, alternative execution modes for
activities, and … most of the discrete decisions in a schedule

Example:
dvar interval x optional in 0..1000000 size in 100..200

An optional interval variable has an additional possible
value in its domain (absence value)

21 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer for scheduling – Interval variable

Optional interval variable

An optional interval variable has an additional possible
value in its domain (absence value)

Domain of values for an optional interval variable x:

 Dom(x) ⊆ {⊥} ∪ { [s,e) | s,e ∈ Z, s≤e }

Constraints and expressions on interval variables specify
how they handle the case of absent intervals (in general it
is very intuitive)

Absent interval Interval of integers
(when interval is present)

22 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer for scheduling – Precedence constraints

Example:

 endBeforeStart(xi, xj, zij) means:

 (xi≠⊥) ∧ (xj≠⊥) ⇒ e(xi) + zij ≤ s(xj)

xi xj

z
ij

e(x
i
) s(x

j
)

23 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer for scheduling – Logical constraints

Unary presence constraint
 presenceOf(x) means: (x≠⊥)

Logical binary constraints between presence status:
 Examples:
 presenceOf(x) == presenceOf(y)
 presenceOf(x) => presenceOf(y)
 presenceOf(x) => !presenceOf(y)

Of course, other combinations are also possible
 presenceOf(x) && presenceOf(y) =>
 presenceOf(u) || presenceOf(v)

x y

x y

x y

24 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer for scheduling – Alternative constraint

Alternative constraint:

 alternative(x, [y1,…,yn])

If x is present, then exactly one of the {y1,…,yn} is present
and synchronized with x (same start and end value)

If x is absent, then all yi are absent too

x

y2

y1

y4

y3

25 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer for scheduling – Alternative constraint

Generalized alternative constraint

 alternative(x, [y1,…,yn], k) k: integer expression

If x is present, then exactly k of the {y1,…,yn} are present
and synchronized with x (same start and end value)

If x is absent, then all yi are absent too

x

y2

y4

y3

y1

k=3

26 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer for scheduling – No-overlap constraint

No-overlap constraint

 noOverlap([x1,…,xn])

The set of present intervals in {x1,…,xn} do not overlap

 noOverlap([x1,…,x6])

x2
x4

Absent
intervals

x5 x1 x3 x6

27 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer for scheduling – Cumul functions

A cumul function is the sum of elementary functions like
pulse, stepAtStart, stepAtEnd

 f = Si pulse(xi,qi)

The value of a cumul function is a stepwise function

Constraints can be posted on cumul functions:

 f ≤ C

 alwaysIn(f,x,levelMin,levelMax)

xi

qi

Di

pulse(xi,qi)

28 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Example: extended flexible job-shop scheduling

CP Optimizer formulation:

29 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Example: extended flexible job-shop scheduling

Create model object
model = CpoModel()

Decision variables: o[i] is operation i
o = [interval_var() for i in V]

Decision variables: a[i][k] is operation i on machine k
a = [{k:interval_var(optional=True,size=p) for k,p in F[i]} for i in V]

Objective: minimize makespan
model.add(minimize(max(end_of(o[i]) for i in V)))

Constraints: precedence constraints
model.add([end_before_start(o[i],o[j]) for i,j in A])

Constraints: machine allocation
model.add([alternative(o[i], a[i].values()) for i in V])

Constraints: machines are unary resources
model.add([no_overlap([a[i][k] for i in V if k in a[i]]) for k in M])

Solve the model
sol = model.solve(trace_log=True, LogPeriod=1000000)

30 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer for scheduling

CP Optimizer has mathematical concepts that naturally
map to features invariably found in industrial scheduling
problems

Temporal constraints
Optional activities

Over-constrained problems
Alternative resources/modes
Work-breakdown structures

Earliness/tardiness costs

Unary resources
Setup times/costs
Travel times/costs

Cumulative resources
Inventories, Reservoirs

Aggregation of individual
costs (max, weighted sum,

Net Present Value)

Parallel batches
Activity incompatibilities

Resource calendars
Resource efficiency

Interval variables

General arithmetical
expressions

Cumul functions

State functions

Sequence variables

Constant functions

31 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Example: a satellite observation scheduling problem

A problem instance and a feasible solution (ICAPS-2007)

A scene with its possible observability time-slots

Observability time-slots

Scheduled observations

All scheduled observations

32 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Example: a satellite observation scheduling problem

Schedule quality depends on the separation time d
between consecutive observations of each scene

d

SB ST

VB

VT

Gain

dd

V(d) Objective: maximize total
gain due to separation times

Number of scheduled
observations is unknown

33 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Example: a satellite observation scheduling problem

Data reading and
constants

Decision variables
Objective function

Constraints

34 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

In OPL IDE: Press the solve button !

In the other APIs: Call a function solve() !

35 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search - Properties

Search is complete

Search is anytime

Search is parallel (unless stated otherwise)

Search is randomized
Internally, some ties are broken using random numbers
The seed of the random number generator is a parameter of
the search

Search is deterministic
Solving twice the same problem on the same machine (even
when using multiple parallel workers) with the same seed for
the internal random number generator will produce the
same result
Determinism of the search is essential in an industrial
context and for debugging

36 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search - Under the hood

Artificial Intelligence Operations Research

Constraint
propagation

Learning

Temporal
constraint
networks

2-SAT
networks

No-goods

Linear
relaxations

Problem
specific
scheduling
algorithms

Tree searchRestarts
LNS Randomization

Model presolveHeuristics

37 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Constraint Propagation: Logical network

Aggregates all binary constraints on interval presence as
an implication graph between literals or their opposite

 [!]presenceOf(u) ⇒ [!]presenceOf(v)

Equivalent to a 2-SAT model

Computes graph condensation and transitive closure:
Detects infeasibility
Allows querying in O(1) whether [!]presenceOf(x) ⇒
[!]presenceOf(y) for any (x,y)

38 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Constraint Propagation: Precedence network

Aggregates all precedence constraints (like
endBeforeStart(u,v,duv)) in a Simple Temporal Network (STN)
extended with Boolean presence status of nodes

Nodes: start or end of (optional) interval variables
Arcs: minimal delay between two nodes

Temporal domain of a node t is maintained as a range [tmin,tmax]
representing the possible values if the interval is present

Propagation exploits the Logical network

39 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Constraint Propagation: Precedence network

Propagation exploits the Logical network
Example:

 endBeforeStart(x,y)
 presenceOf(y)=>presenceOf(z)
 presenceOf(z)=>presenceOf(x)

Logical network deduces:
 presenceOf(y)=>presenceOf(x)

The precedence constraint can propagate the bounds of x
on y : smin(y) ¬ max(smin(y), emin(x))

This is very powerful: propagation occurs even when the
presence status is still unfixed

x y

z

40 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Constraint Propagation: Precedence network

Propagation exploits the Logical network
This is very powerful: propagation occurs even when the
presence status is still unfixed
Classical STN propagation algorithms are extended to
perform this type of directional propagation
Algorithms used in CP Optimizer:

At root node: extension of an improved version of Bellman-
Ford algorithm: B. Cherkassky, A. Goldberg, T. Radzic.
Shortest Paths Algorithms: Theory and Experimental
Evaluation. Mathematical Programming 73, 129–174 (1996)
During the search: extension of the algorithm described in:
A. Cesta, A. Oddi. Gaining Efficiency and Flexibility in the
Simple Temporal Problem. In: Proc. TIME-96 (1996)

41 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Constraint Propagation: Timelines (noOverlap,
cumulFunction, ...)

Default propagation algorithm is the timetable that
incrementally maintains the domain of the function as a
set of segments with bounds on the function values

Sequence variables (noOverlap) are internally
represented as a precedence graph on interval variables

42 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Constraint Propagation: Timelines (noOverlap,
cumulFunction, ...)

Stronger propagation algorithms are available and are
automatically turned on in the search depending on the
context:

Multiple O(n log(n)) algorithms for disjunctions
(noOverlap): P. Vilím: Global constraints in scheduling.
Ph.D. thesis. 2007.
O(n2) time-table edge-finding for cumul functions:
P. Vilím: Timetable Edge Finding Filtering Algorithm for
Discrete Cumulative Resources. Proc. CPAIOR-2011.

43 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Linear Relaxation

CPLEX LP is used to provide a relaxation to the
scheduling (sub-)problem

What is relaxed?
Irregular cost functions
Precedences, logical constraints between intervals
Alternatives, spans
Linear constraints in the formulation
Etc.

Result is used:
For computing lower-bounds
As a heuristic to guide the search

44 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Linear Relaxation

Results

45 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Presolve

Model analysis before search begins. The hope is to
improve the formulation by replacing constructs with
others that will be more efficient

Transforms the initial model into a new one. The
transformed model is fed to the workers

CP Optimizer does different types of operations inside
presolve

Basic simplifications. e.g. constant propagation, linear
simplification
Aggregation / combination. e.g. common sub-expression
elimination
Higher level transformations

46 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Presolve (examples)

startOf(y) ≤ endOf(x) → endBeforeStart(x, y)

endOf(x) – startOf(x) → lengthOf(x)

startBeforeStart(x, y) ∧ noOverlap([…,x,…,y,…])

 → endBeforeStart(x, y)

presenceOf(x) - presenceOf(y) <= 0

 → presenceOf(x) ⇒ presenceOf(y)

x!=y, y!=z, x!=z

 → allDifferent([x,y,z])

47 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Main principle: cooperation between several approaches

100 101 102 103 104 105 106

CP Optimizer Automatic Search

Failure-Directed Search

Large-Neighborhood Search

Most classical benchmarks

Iterative Diving

Problem size
(number of

interval
variables)

48 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Failure-Directed Search (FDS) (complete search)

FDS is automatically activated when:
The search space seems to be small enough, and
LNS has difficulties improving the current solution

Assumption is that in these conditions:
There probably isn’t any (better) solution
If there is one, it is very hard to find
It is necessary to explore the whole search space

FDS uses periodic restarts and focuses on finding dead-
ends (failures) in the search tree as quickly as possible

FDS branches on ranges

49 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Failure-Directed Search (FDS) (complete search)

Decisions are rated and the ones that often lead to strong
domain reduction in the search are preferred: they are
used earlier in the search during the next restarts

FDS also records no-goods for avoiding exploring some
identical part of the search space

FDS
Search Tree

Resta
rt

No-goods

Decisions rating

50 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Large-Neighborhood Search (LNS) (heuristic search)

Iterative improvement method:
1. Start with an existing solution (produced using some

heuristics + classical CP search tree)

51 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Large-Neighborhood Search (LNS) (heuristic search)

Iterative improvement method:
1. Start with an existing solution (produced using some

heuristics + classical CP search tree)
2. Take part of the solution (fragment) and relax it. Fix the

structure of the rest (but no start/end values: notion of
Partial Order Schedule)

relax keep rigid

52 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Large-Neighborhood Search (LNS) (heuristic search)

Iterative improvement method:
1. Start with an existing solution (produced using some

heuristics + classical CP search tree)
2. Take part of the solution (fragment) and relax it. Fix the

structure of the rest (but no start/end values: notion of
Partial Order Schedule)

3. Find (improved) solution using a limited search tree

relax keep rigid

53 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Large-Neighborhood Search (LNS) (heuristic search)

Iterative improvement method:
1. Start with an existing solution (produced using some

heuristics + classical CP search tree)
2. Take part of the solution (fragment) and relax it. Fix the

structure of the rest (but no start/end values: notion of
Partial Order Schedule)

3. Find (improved) solution using a limited search tree

improve kept rigid

54 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Large-Neighborhood Search (LNS) (heuristic search)

Uses portfolios and online reinforcement learning

55 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Iterative Diving (heuristic search)

Idea of iterative diving: perform aggressive dives (no
backtrack) in the search tree explored by CP

For instance on RCPSP it boils down to some very
classical ideas (list scheduling, decoding schemes, …)

The challenge is to generalize these problem-specific
ideas to the general modeling concepts of CP Optimizer

56 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Iterative Diving (heuristic search)

New benchmark with RCPSP from 500 to 500.000 tasks
Largest problem: 500.000 tasks, 79 resources,
4.740.783 precedences, 4.433.550 resource requirements

Time to first feasible solution (V12.8 v.s. V12.9)

0E+00 5E+04 1E+05 2E+05 2E+05 3E+05 3E+05 4E+05 4E+05 5E+05 5E+05
0

500

1000

1500

2000

2500

3000
First solution time for large RCPSPs (automatic search with 4 workers)

V12.8 V12.9

Instance size (Number of tasks)

Fi
rs

t s
ol

ut
io

n
tim

e
(s

)

57 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search - Performance

Results published in CPAIOR-2015 (using V12.6)
Job-shop

15 instances closed out of 48 open ones
Job-shop with operators

208 instances closed out of 222 open ones
Flexible job-shop

74 instances closed out of 107 open ones
RCPSP

52 new lower bounds + 39 instances closed in 2019
RCPSP with maximum delays

51 new lower bounds out of 58 small-medium instances
 + 372 bounds improved on large instances in 2019

Multi-mode RCPSP
535 instances closed out of 552

Multi-mode RCPSP with maximum delays
All 85 open instances of the benchmark closed

58 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Performance evaluation

As of today, our performance evaluation benchmark
contains 159 different scheduling models tested on a
total of 3436 instances

59 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Performance evaluation

The benchmark collects problems from different sources:
Classical problems (job-shop, RCPSP, …)
New problems proposed in academic papers
Industrial scheduling problems from:

Customers
Business partners
End users

Problems discussed on our Optimization forum
…

Problems are quite diverse
Size range: 30 to 1.000.000 interval variables
Resource types: disjunctive, cumulative
Objective functions: makespan, weighted
earliness/tardiness, resource allocation costs, activity non-
execution penalties, resource transition costs, ...

60 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Performance evaluation

The benchmark is mostly used to monitor the
performance of the automatic search

Though the search is complete, it is (still) not able to
solve all problems to optimality

Each problem instance is run with a given time-limit on a
given number of random seeds (search is randomized)

Two versions of the search algorithm A and B are
compared by computing a speed-up ratio that estimates
how much faster the best algorithm (say A) finds a
solution equivalent to the best solution found by the
worst algorithm (here, B)

Speed-up ratios are aggregated on the different problem
instances to compute an average speed-up ratio

61 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Performance evaluation

Example

V12.7.1
V12.7

Problem: job-shop with
earliness/tardiness
Instance: BFS_LT_2_20x10.cpo

62 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer automatic search

Objective
landscapes

Failure-directed
search

Iterative
diving

With 4 parallel workers, average speed-up of 42%
between 12.8 and most recent version 12.9

63 / 65 CP 2019 Tutorial © 2019 IBM Corporation

CP Optimizer / CPLEX (MIP): a similar ecosystem

Warnings

Warm start

User model

Internal model

Model analysis Model presolve

Py
th

on
, O

PL
, C

++
, J

av
a,

 .N
ET

Conflict

Model

Solution

CPO file

Search log
Automatic

Solve

Conflict
refiner

64 / 65 CP 2019 Tutorial © 2019 IBM Corporation

Conclusion

A mathematical modeling language for combinatorial
optimization problems that extends ILP (and classical CP)
with some algebra on intervals and functions allowing
compact and maintainable formulations for complex
scheduling problems

A continuously improving automatic search algorithm
that is complete, anytime, efficient (e.g. competitive with
problem-specific algorithms on classical problems) and
scalable

Recent review of CP Optimizer (modeling concepts,
applications, examples, tools, performance,…) :

IBM ILOG CP Optimizer for scheduling. Constraints (2018)
23:210–250. http://ibm.biz/Constraints2018

http://ibm.biz/Constraints2018

65 / 65 CP 2019 Tutorial © 2019 IBM Corporation

References

P. Laborie, J. Rogerie. Reasoning with Conditional Time-Intervals. In: Proc. FLAIRS-
2008.
P. Laborie, J. Rogerie, P. Shaw, P. Vilím. Reasoning with Conditional Time-Intervals.
Part II: An Algebraical Model for Resources. In: Proc. FLAIRS-2009.

P. Laborie. CP Optimizer for detailed scheduling illustrated on three problems. In:
Proc. CPAIOR-2009.
P. Laborie, B. Messaoudi. New Results for the GEO-CAPE Observation Scheduling
Problem. In Proc. ICAPS-2017.
P. Laborie. An Update on the Comparison of MIP, CP and Hybrid Approaches for
Mixed Resource Allocation and Scheduling. In Proc. CPAIOR-2018.

P. Laborie, D. Godard. Self-Adapting Large Neighborhood Search: Application to
Single-Mode Scheduling Problems. In: Proc. MISTA-2007.
P. Vilím. Timetable Edge Finding Filtering Algorithm for Discrete Cumulative
Resources. In: Proc. CPAIOR-2011.
P. Vilím, P. Laborie, P. Shaw. Failure-directed Search for Constraint-based Scheduling.
In: Proc. CPAIOR-2015.
P. Laborie, J. Rogerie. Temporal Linear Relaxation in IBM ILOG CP Optimizer. Journal
of Scheduling, 19(4), 391–400 (2016).
P. Laborie. Objective Landscapes for Constraint Programming. In Proc. CPAIOR-2018.

P. Laborie, J. Rogerie, P. Shaw, P. Vilím. IBM ILOG CP Optimizer for Scheduling.
Constraints Journal, 23(2), 210-250 (2018). http://ibm.biz/Constraints2018

M
od

el
in

g
co

nc
ep

ts

Ex
am

pl
es

Se
ar

ch
al

go
rit

hm

O
ve

rv
ie

w

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

