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The age of ML

A Level 4 autonomous car is one defined as a car that can completely 
drive itself, from start to finish, within a specifically-designated area.
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The age of ML

Verification/robustness

Explainability/interpretability 

“use” vs “not use”
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Robustness of ML: misclassification  

88% tabby cat

Original image Perturbation Perturbed image+ =

99% guacamole
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Robustness of ML: STOP sign attack
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Robustness of ML: Autonomous car attack 

Adversarial machine learning, 
Y. Vorobeychik, B. Li
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Standardization: GDPR

We summarize the potential impact that the European Union's new General Data 
Protection Regulation will have on the routine use of machine-learning algorithms. 
Slated to take effect as law across the European Union in 2018, it will place restrictions 
on automated individual decision making (that is, algorithms that make decisions 
based on user-level predictors) that "significantly affect" users. When put into 
practice, the law may also effectively create a right to explanation, whereby a user 
can ask for an explanation of an algorithmic decision that significantly affects them. 
We argue that while this law may pose large challenges for industry, it highlights 
opportunities for computer scientists to take the lead in designing algorithms and 
evaluation frameworks that avoid discrimination and enable explanation. 
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Verification and explanation of ML models 
are important topics!

Interpretation of ML models

Robustness of ML models

? I.Goodfellow at AAAI 2019, 
“Adversarial Machine Learning” 
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Repeated block structure

Input
• features
• images 

ReLU
…



46

Repeated block structure

Input
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Explanations

Interpretable Explanations
(Discussion)
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State-of-the-art

Heuristic approaches
(e.g. LIME)

Why Should I Trust You?” Explaining the Predictions of Any Classifier, Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin, KDD’16
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Explanations

Logic-based approach to explanations

Abduction-Based Explanations for Machine Learning Models, AAAI’19
Alexey Ignatiev, Nina Narodytska and Joao Marques-Silva

Andy Shih and Arthur Choi and Adnan Darwiche
A Symbolic Approach to Explaining Bayesian Network Classifiers, IJCAI’18 
Compiling Bayesian Network Classifiers into Decision Graphs, AAAI’19
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Propositional abduction problem

R. Reiter. A theory of diagnosis from first principles. Artif. Intell., 32

The main idea comes from work on model 
diagnosis to explain failures of the systems 
from a given set of hypotheses
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Formalization of NN
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Propositional abduction problem
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Logic-based approaches (Xplainer)

1. global explanations 
2. provide guarantees about quality  
3. robustness of explanations 

On Validating, Repairing and Refining Heuristic ML Explanations, CoRR report’19,
Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva
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Logic-based approaches (Xplainer)

1. global explanations 
2. provide guarantees about quality  
3. evaluate robustness of explanations 

Assessing Heuristic Machine Learning Explanations with Model Counting, SAT’19
Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, João Marques-Silva
(Used approximate model counting to evaluate quality of the explanations )



116

Xplainer: Subset-minimal explanation 



117

Xplainer: Subset-minimal explanation 



118

Xplainer: Subset-minimal explanation 



119

Xplainer: Subset-minimal explanation 

Explanations are not unique
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Xplainer: Subset-minimal explanation 

Some look more sensible than others!
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Verification of NNs

1. Certification of Neural Networks
(train a network that satisfies a property)

2. Verification of Neural Networks
(complete, incomplete verification)

Algorithms for Verifying Deep Neural Networks
Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark Barrett, Mykel J. Kochenderfer

https://arxiv.org/search/cs?searchtype=author&query=Liu%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Arnon%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Lazarus%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Barrett%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Kochenderfer%2C+M+J
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Duality

On Relating Explanations and Adversarial Examples, NeurIPS’2019
Alexey Ignatiev, Nina Narodytska, Joao Marques-Silva
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Logic-based methods on explanability of NNs 
do suffer from scalability issues
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It is an issue!
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In  Search for a SAT-friendly Binarized Neural 
Network Architecture

Hongce Zhang (summer @ VMware),  Aarti Gupta, Toby Walsh

Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability
Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry
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Can we train a NN so that it is easier 
to analyze?
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Conclusion

We showed a tight  connection between 
explanations and counterexamples 
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Conclusion

There is hope to battle scalability issues!



161

Conclusion

Thanks!
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