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My photos

OK, but first you'll need to set up Photos
to do that.

Open Photos

YOU CAN ALSO TRY

"Launch the Photos app”

AIphaGo Zero & Alpha Zero
Image & Speech Recognition L 4



The age of ML

source: wikipedia
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The age of ML

NetCarShow.com
Audi AI:ME, concept level 4 autonomous car, April 2019

A Level 4 autonomous car is one defined as a car that can completely
drive itself, from start to finish, within a specifically-designated area.



The age of ML

Mediated Perception (¢.g. Mobileye, Google)

2

Input Image

Behavior Reflex (e.g. ALVINN, LeCun et al.)

Direct Perception (ours)




The age of ML

“use” vs “not use”




The age of ML

Does ML-controller comply with a specification?

“use” vs “not use”




The age of ML

Does ML-controller comply with a specification?

Why does ML controller drive a car into a wall?




The age of ML

Verification/robustness

Why does ML controller drive a car into a wall?




The age of ML

Verification/robustness

Explainability/interpretability




Robustness of ML models

Interpretation of ML models
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Robustness of ML: misclassification

Original image

88% tabby cat



Robustness of ML: misclassification

Original image + Perturbation =

88% tabby cat



Robustness of ML: misclassification

Original image + Perturbation = Perturbed image

88% tabby cat



Robustness of ML: misclassification

Original image + Perturbation = Perturbed image

88% tabby cat 99% guacamole



Robustness of ML: STOP sign attack
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Evkholt et al'18 Aung et al’17



Robustnhess of ML: Autonomous car attack

Adversarial machine learning,
Y. Vorobeychik, B. Li
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Artificial Intelligence (Al) — Assessment of the robustness of neural networks —
Part 1: Overview
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Interpretation of ML models
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Interpretation of ML models

The Challenge of Crafting Intelligible Intelligence

By Daniel S. Weld, Gagan Bansal

Communications of the ACM, June 2019, Vol. 62 No. 6, Pages 70-79

10.1145/3282486
Comments (1)
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Artificial Intelligence (ai) systems have reached or exceeded
human performance for many circumscribed tasks. As a result,
they are increasingly deployed in mission-critical roles, such as
credit scoring, predicting if a bail candidate will commit another
crime, selecting the news we read on social networks, and self-
driving cars. Unlike other mission-critical software,
extraordinarily complex Al systems are difficult to test: Al
decisions are context specific and often based on thousands or
millions of factors. Typically, Al behaviors are generated by
searching vast action spaces or learned by the opaque
optimization of mammoth neural networks operating over
prodigious amounts of training data. Almost by definition, no
clear-cut method can accomplish these Al tasks.

Explainable Artificial Intelligence (XAI)

LA

EXFU&INABLE ARTIFICIAL INTEL[IEENEE

FY17 FY18 FY19 FY20 Fy21

David Gunning
DARPA/I20
Program Update November 2017

(DARPA,
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Standardization: GDPR

European Union regulations on algorithmic decision-making
and a “‘right to explanation™

Bryce Goodman,'* Seth Flaxman,’

We summarize the potential impact that the European Union's new General Data
Protection Regulation will have on the routine use of machine-learning algorithms.
Slated to take effect as law across the European Union in 2018, it will place restrictions
on automated individual decision making (that is, algorithms that make decisions
based on user-level predictors) that "significantly affect" users. When put into |

practice, the law may also effectively create a right to explanation, whereby a user |
can ask for an explanation of an algorithmic decision that significantly affects them. |
We argue that while this law may pose large challenges for industry, it highlights
opportunities for computer scientists to take the lead in designing algorithms and
evaluation frameworks that avoid discrimination and enable explanation.

30
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are important topics!
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Verification and explanation of ML models
are important topics!

Robustness of ML models
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Verification and explanation of ML models
are important topics!

Robustness of ML models

|.Goodfellow at AAAI 2019,
“Adversarial Machine Learning”
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Non-Linear transformation
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Repeated block structure
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Repeated block structure
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Explanations

Interpretable Explanations
(Discussion)
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Explanations
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How would you explain this decision?
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Explanations

From: salem@pangea.Stanford. EDU (Bruce Salem)
Subject: Re: Science and theories

How is it possible for us to believe in God (or god, I gues
when science has shown his existence to be impossible?
I think atheism is the way to go forward.

Atheism

52
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From: salem@pangea.Stanford. EDU (Bruce Salem)
Subject: Re: Science and theories

How is it possible for us to believe in God (or god, I gues
when science has shown his existence to be impossible?
I think atheism is the way to go forward.

Atheism

How would you explain this decision?

53



Explanations

From: salem@pangea.Stanford EDU (Bruce Salem
Subject: Re: Science and theories
How is it possible for us to believe in Go

God (or B0, I guess
when science SHOW his existence to be impossible?
1 [RiRK is the way to go forward.

Atheism

‘ Atheism Christianity

How would you explain this decision?
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State-of-the-art

Heuristic approaches
(e.g. LIME)

Why Should | Trust You?” Explaining the Predictions of Any Classifier, Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin, KDD’16



LIME: build a local nheighborhood
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LIME: build a local nheighborhood

Locélly weighted
regression
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LIME: build a local nheighborhood




LIME: build a local nheighborhood

P( ) =0.05




Heuristic approaches

1. local explanations



Heuristic approaches

1. local explanations
2. no guarantees about quality



Heuristic approaches

1. local explanations
2. no guarantees about quality
3. robustness of explanations



Explanations

Logic-based approach to explanations

Abduction-Based Explanations for Machine Learning Models, AAAI'19
Alexey Ignatiev, Nina Narodytska and Joao Marques-Silva

Andy Shih and Arthur Choi and Adnan Darwiche
A Symbolic Approach to Explaining Bayesian Network Classifiers, IJCAI'8
Compiling Bayesian Network Classifiers into Decision Graphs, AAAI'19

78



Propositional abduction problem

The main idea comes from work on model
diagnosis to explain failures of the systems
from a given set of hypotheses

R. Reiter. A theory of diagnosis from first principles. Artif. Intell., 32
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Propositional abduction problem

Given a classifier M, represented by some logic
encoding, a cube Z and a prediction p, compute
a subset-minimal Z C 7 s.t.

1.(ZAM [~ 1)
2(ZAM = p)
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RelLU
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Formalization of NN
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Formalization of NN
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An explanation is a subset of input features so that
changes to the rest of inputs do not affect the prediction.



Subset-minimal explanation

Input: M, initial cube Z, prediction p
1 begin

2 foreach [ € Z do
if Z\ {l} FM — p then

| Z <+ Z\{l}

5 return /

6 end

Algorithm 1: Computing a subset-minimal explanation
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Logic-based approaches (Xplainer)

1. global explanations
2. provide guarantees about quality

3. robustness of explanations

On Validating, Repairing and Refining Heuristic ML Explanations, CoRR report’19,
Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva



Logic-based approaches (Xplainer)

1. global explanations
2. provide guarantees about quality
3. evaluate robustness of explanations

Assessing Heuristic Machine Learning Explanations with Model Counting, SAT’19
Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ilgnatiev, Jodo Marques-Silva
(Used approximate model counting to evaluate quality of the explanations)



Xplainer: Subset-minimal explanation

(a) (b) (c) (d)

Figure 1: Possible minimal explanations for digit one.
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Xplainer: Subset-minimal explanation
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Figure 1: Possible minimal explanations for digit one.

(a) (b) (c) (d)

[ Explanations are not unique




Xplainer: Subset-minimal explanation

(a) (b) (c) (d)

Figure 1: Possible minimal explanations for digit one.

(a) (b) (c) (d)

[ Some look more sensible than others!
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1. Certification of Neural Networks
(train a network that satisfies a property)

2. Verification of Neural Networks
(complete, incomplete verification)



Verification of NNs

1. Certification of Neural Networks
(train a network that satisfies a property)

2. Verification of Neural Networks
(complete, incomplete verification)

Algorithms for Verifying Deep Neural Networks
Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark Barrett, Mykel J. Kochenderfer



https://arxiv.org/search/cs?searchtype=author&query=Liu%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Arnon%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Lazarus%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Barrett%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Kochenderfer%2C+M+J
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Logic-based approach

Given a classifier M, a counterexample

to a prediction p is a subset-minimal
set of feature literals T, such that

T = \/t,t;ép(M — t)
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Duality

Given a model M, represented by some logic encoding, and a prediction p,

e cvery explanation Z of p breaks every counterexample of p, and

e every counterexample T of p breaks every explanation of p.

On Relating Explanations and Adversarial Examples, NeurlPS’2019
Alexey Ignatiev, Nina Narodytska, Joao Marques-Silva

132



Logic-based approach

Input: formula M and prediction p
Output: set E of all absolute explanations of prediction p

1 (C,E, Z) « (0,0,0)

2 do:
3 if ZFE(M — p) :
4 E+~EuUu{zZ} # Z is an explanation; save it
5 else:
6 (T,t) + ExtractInstance() # get an instance 7 with a
prediction t, t#p
7 forl e T :
8 if (T\{{H)F(M —1):
T+ T\{l}
10 C+ Cu{T} # update T with a new counterexample T
11 £ < MinimumHS(C) # get a new hitting set of C

12 while Z #£ ()

13 return E
Algorithm 1: Duality-based computation of all absolute explanations
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Logic
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13

-based approach

Input: formula M and prediction p
Output: set E of all absolute explanations of prediction p

(C,E, 2) < (0,0,0)
do:
if ZFE(M — p) :
E+~EuUu{zZ} # Z is an explanation; save it
else:
(T,t) < ExtractInstance() # get an instance 7 with a
prediction t, t#p
forl e T :
if (T\{{H)F(M —1):
T+ T\A{l}
C«+ Cu{T} # update T with a new counterexample 7T
£ < MinimumHS(C) # get a new hitting set of C
while Z #£ ()
return E
Algorithm 1: Duality-based computation of all absolute explanations
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Logic-based approach

Input: formula M and prediction p
Output: set E of all absolute explanations of prediction p

1 (C,E, Z) « (0,0,0)

2 do:
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4 E+~EuUu{zZ} # Z is an explanation; save it
5 else:
6 (T,t) + ExtractInstance() # get an instance 7 with a
prediction t, t#p
7 forl e T :
8 if (T\{{H)F(M —1):
T+ T\{l}
10 C<«+ Cu{T} # update T with a new counterexample T
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12 while Z #£ ()
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Algorithm 1: Duality-based computation of all absolute explanations
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Logic-based approach

(b) patch area ) an XP d) all XP’s
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Logic-based approach

(b) patch area ) an XP d) all XP’s )aCE (f) an AE (*




Outline

Neural Networks

. \background) 0 @00 @ |

Explanation




Scalability



Scalability

Heuristic methods for NN explainability
do not suffer from scalability issues



Scalability

Heuristic methods for NN explainability
do not suffer from scalability issues

NO guarantees about the quality of
explanations



Scalability

Logic-based methods on explanability of NNs
do suffer from scalability issues



Scalability

Input: formula M and prediction p
Output: set E of all absolute explanations of prediction p

1 (C,E, Z) « (0,0,0)

2 do:
3 if ZFE(M — p) :
4 E—~EU{zZ} # Z is an explanation; save it
5 else:
6 (T,t) + ExtractInstance() # get an instance 7 with a

prediction t, t#p

forle T :

if (T\{{H)F(M —1):
T+ T\{l}

10 C+ Cu{T} # update T with a new counterexample T
11 £ < MinimumHS(C) # get a new hitting set of C

12 while Z #£ ()

13 return E
Algorithm 1: Duality-based computation of all absolute explanations
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Scalability

It is an issue!



Scalability
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scalability issue, e.q.
 add constraints to the training procedure
* uUSe approximate reasoning
 simplify networks during the training
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* uUSe approximate reasoning
 simplify networks during the training



Scalability

In Search for a SAT-friendly Binarized Neural

Network Architecture
Hongce Zhang (summer @ VMware), Aarti Gupta, Toby Walsh

Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability
Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry
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Scalability
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Audi AI:ME, concept level 4 autonomous car, April 2019
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Scalability
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Can we train a NN so that it Is easier

to analyze?
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Conclusion



Conclusion

We showed a tight connection between
explanations and counterexamples



Conclusion

There is hope to battle scalability issues!



Conclusion

Thanks!
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