

Integrating Machine Learning and Discrete Optimization

Bistra Dilkina

Assistant Professor of Computer Science, USC Associate Director, USC Center of AI in Society

> Invited Talk at CP 2019 Oct 3, 2019

Al for Sustainability and Social Good

Biodiversity Conservation Disaster resilience Public Health & Well-being

Design of policies to manage limited resources for best impact translate into large-scale decision / optimization and learning problems, combining discrete and continuous effects

Constraint Reasoning and Optimization

Decision making problems of larger size and new problem structure drive the continued need to improve combinatorial solving methods

ML \leftrightarrow Combinatorial Optimization

- Exciting and growing research area
- Design discrete optimization algorithms with learning components
- Learning methods that incorporate the combinatorial decision making they inform

ML-Driven Discrete Optimization

Ta Ex Ap He Tailor algorithms to a family of instances to discover novel search strategies

A realistic setting

- Same problem is solved repeatedly with slightly different data
- Delivery truck in Los Angeles:
 - Daily routing in the same area with slightly different customers
- Typical approach:
 - Customize branch-and-bound / approx. / heuristic

(*MIP*) $z^* = \min\{c^T x \mid Ax \leq b, x \in \mathbb{R}^n, x_j \in \mathbb{Z} \forall j \in I\}$

Widely used to model real-world decision-making scenarios:

Conservation planning

Kidney exchange

Road Infrastructure Planning

Airline fleet and crew scheduling

Branch-and-Bound in a Nutshell

Opportunities for Machine Learning in B&B

Task	lssue	Current Approach
Select Branching Variable	what selection rule?	single hand-designed ranking metric
Add Cuts	which cuts to add?	hand-designed ranking formula
Run Heuristics	which heuristics to run?	run each every k nodes (fixed parameter k)
Select Node	what selection rule?	best-first

Improve B&B with ML-driven strategies for these tasks.

- Most related work uses ML at a "meta level", e.g. algorithm portfolios, parameter tuning, strategy selection
- Here: use ML to discover novel strategies that dynamically guide the behavior of the BnB algorithm

Opportunities for Machine Learning in B&B

Task	lssue	Current Approach
Select Branching Variable	what selection rule?	single hand-designed ranking metric
Add Cuts	which cuts to add?	hand-designed ranking formula
Run Heuristics	which heuristics to run?	run each every k nodes (fixed parameter k)
Select Node	what selection rule?	best-first

Improve B&B with ML-driven strategies for these tasks.

- Most related work uses ML at a "meta level", e.g. algorithm portfolios, parameter tuning, strategy selection
- Here: use ML to discover novel strategies that dynamically guide the behavior of the BnB algorithm

Opportunities for Machine Learning in B&B

Task	lssue	Current Approach
Select Branching Variable	what selection rule?	single hand-designed ranking metric
Add Cuts	which cuts to add?	hand-designed ranking formula
Run Heuristics	which heuristics to run?	run each every k nodes (fixed parameter k)
Select Node	what selection rule?	best-first

Improve B&B with ML-driven strategies for these tasks.

- Most related work uses ML at a "meta level", e.g. algorithm portfolios, parameter tuning, strategy selection
- Here: use ML to discover novel strategies that dynamically guide the behavior of the BnB algorithm

- Branching on the "right" variables can have a dramatic impact on the number of nodes in B&B tree
 - ▶ e.g. small backdoors in MIPs [Dilkina et al, CPAIOR 2009]

Joint work with my PhD student **Elias Khalil**, and our collaborators George Nemhauser, Le Song and Pierre Le Bodic [AAAI 2016]

Learning to Branch

 $x_2 = 1$

 $x_k = 1$

 $x_4 = 1$

 $x_3?$

 $x_{5}?$

...

 x_n ?

 $x_2 = 0$

 $x_1 = 0$

 $x_4 = 0$

 $x_4 = 0$

 $x_4 = 1$

Ideally, select variables that lead to small sub-tree \leftrightarrow many infeasible nodes \bigotimes

Strong Branching (SB) achieves that, \bigcirc but is extremely costly $x_k = 0$,'

Given: dataset of (variable features, Strong Branching score)

Learn: a ranking model that imitates SB

Learning to Branch

Given: dataset of (variable features, Strong Branching score)

Learn: a ranking model that imitates SB

		y_j^i	feature 1	feature 2	feature 3	feature 4
	<i>x</i> ₂	0	0.4	0.4	0.3	0.9
NL.	<i>x</i> 4	1	0.3	0.9	0.4	0.9
/•1	<i>X</i> 5	0	0.2	0.2	0.6	0.7
	<i>x</i> 6	1	0.5	0.8	0.4	0.4

72 features, e.g.: objective coefficient, pseudocosts, statistics for constraint degrees in node subproblem
+ pairwise product of features

labels: 1 if $SB(x_i)$ close to max. SB at node; 0 o.w.

Goal

Learn a function of the features that **ranks variables** with better labels higher than other variables.

- "Learning to rank with pairwise loss", popular in web search
- Learn an f that minimizes the number of wrong pairwise orderings between variables of the same node
- Ranking function f is linear in the features
- NP-hard but can optimize efficiently an upper bound as a convex SVM optimization problem [Joachims2006].
- Open-source implementation SVM^{rank}: http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Road Network Design for Flooding

Gap (Geometric Mean)Gap (Median) Gap (Maximum)

2,000,000

MIPLIB2010 Benchmark Pseudocost Strong Branching + Pseudocost Learning to Branch 1,971,333 1,979,660

Compared to PC on Hard instances: 33% fewer nodes, 14% less time

USC

Learning-Driven Algorithm Design

Takeaways

- First ML framework for branching
 - Feature Engineering + Linear Ranking Model
- Significant improvements on families of instances
 - On-the-fly version for limited data settings

USC

In many applications, obtaining **good solutions quickly** is equally or more important than proving optimality.

Using Primal Heuristics in Branch-and-Bound

Primal heuristic: an incomplete algorithm that can find a feasible solution (and hence can improve the primal bound).

► Low Success Rate: #incumbents found #runs

- Time Cost: time for heuristic could instead be used to solve additional nodes.
- **Current approach in solvers**: run heuristic every *k* nodes
 - Frequency k: a parameter that is manually tuned.

Goal

Automate this decision-making task using ML and improve performance

Joint work with my PhD student Elias Khalil, and our collaborators George Nemhauser, Shabbir Ahmed, Yufen Shao [IJCAI 2017]

Learning to Run Heuristics

Learning to Run Heuristics in Practice

Forest Harvesting: Generalized Independent Set

Learning-Driven Algorithm Design

Takeaways

- First ML framework for heuristic selection in B&B
- Dynamic, node-dependent decision-making
- Forest Harvesting: 60% reduction in Primal Integral
- MIPLIB2010 : Even on the heterogeneous benchmark 6% reduction in Primal Integral

Learning-driven Algorithm Design

- Exciting and growing research area
- Many Open Directions:
 - Local Search, Nonlinear Optimization, Constraint Programming, Decision Diagrams
 - Theoretical Foundations
 - Lifelong Learning

The data-decisions pipeline

Many real-world applications of AI involve a common template:

[Horvitz and Mitchell 2010; Horvitz 2010]

Typical two-stage approach

Goal: maximize accuracy

Goal: maximize decision quality

Google maps

Two-stage training

Challenge

- Maximizing accuracy \neq maximizing decision quality
- "All models are wrong, some are useful"
- Two-stage training doesn't align with end goal

Decision-focused learning

Automatically shape the ML model's loss by incorporating the optimization problem into the training loop

Ferber et al (2019), Wilder et al. (2019), Amos and Kolter (2017) ³⁵

Decision-focused learning

Objective function $f(x, \theta)$ $x \in \{0, 1\}^n$ are the **decision variables** θ are **unknown parameters** (i.e. the coefficients in the objective e.g., true travel times)

Idea: Take derivative of decision objective w.r.t. ML model weights, train model via gradient descent (e.g. *similar approach for convex opt. [Donti et al '17])*

Approach

[Wilder, Dilkina, Tambe, AAAI 2019]

- Challenge: the optimization problem is discrete!
- Solution: relax to continuous problem, differentiate, round

- How to compute $\frac{dx^*}{d\theta}$?
- Idea: (locally) optimal continuous solution must satisfy KKT conditions (which are sufficient for convex problems)
- The KKT conditions define a system of linear equations based on the gradients of the objective and constraints around the optimal point.
- Differentiate those equations at optimum (e.g. convex opt. [Donti et al '17])

Linear programs

Model exactly combinatorial problems like bipartite matching, shortest path, mincut, etc. Or correspond to a relaxation of other combinatorial problems Standard form:

 $\max_{x} \theta^{T} x$ $Ax \le b$

• $\frac{dx^*}{d\theta}$ doesn't exist!

• Solution: add a regularizer to smooth things out

$$\max_{x} \theta^{T} x - \gamma \|x\|_{2}^{2}$$
$$Ax \le b$$

- Now, Hessian is $\nabla_x^2 f(x, \theta) = -2\gamma I < 0$
- Provably (a) differentiable and (b) close to original LP

Results

- Combinatorial problems: encoded as LP, e.g. bipartite maximum matching
- Combinatorial problems: submodular maximization, e.g. influence maximization
- Decision-focused has consistently better solution quality
 - 15-70% improvement in solution over 2-Stage, across three domains

Budget allocation			Matching	Dive	rse recommendat	tion	
k =	5	10	20		5	10	20
NN1-Decision	$\textbf{49.18} \pm \textbf{0.24}$	$\textbf{72.62} \pm \textbf{0.33}$	98.95 ± 0.46	2.50 ± 0.56	15.81 ± 0.50	$\textbf{29.81} \pm \textbf{0.85}$	52.43 ± 1.23
NN2-Decision	44.35 ± 0.56	67.64 ± 0.62	93.59 ± 0.77	6.15 ± 0.38	13.34 ± 0.77	26.32 ± 1.38	47.79 ± 1.96
NN1-2Stage	32.13 ± 2.47	45.63 ± 3.76	61.88 ± 4.10	2.99 ± 0.76	4.08 ± 0.16	8.42 ± 0.29	19.16 ± 0.57
NN2-2Stage	9.69 ± 0.05	18.93 ± 0.10	36.16 ± 0.18	3.49 ± 0.32	11.63 ± 0.43	22.79 ± 0.66	42.37 ± 1.02

Table 1: Solution quality of each method for the full data-decisions pipeline.

• But typically much less accurate (wrt AUC, MSE etc.)

Application: Tuberculosis treatment

- Follow-on work improving treatment in Indian TB system
- In collaboration with Everwell (NGO)
- Predict if patients will miss daily dose
- **Optimize** health worker visits subject to knapsack constraints (LP)
- More in our paper [Killian et al, KDD 2019]

Application: Tuberculosis treatment

Less "accurate", but +15% successful interventions!

Decision Focused Learning for Mixed Integer Programming (MIP) problems

- Many combinatorial problems do not have a nice relaxation-based algorithm
- But we know how to differentiate through LP optimization,
- Idea: cutting planes for MIP results in LP with added cuts
- Differentiate through Cutting-plane-generated LP for training
- At test time, obtain predictions and solve MIP with Branch-and-Bound

Domains

Portfolio Optimization

- Predict monthly rate of return (% return)
- Optimize monthly return for portfolio
- · Limiting risk, sector exposure, transactions...
- · Data: SP500 (USA), DAX (Germany)

· Diverse Bipartite Matching

- · Predict match success probability
- Optimize total number of successful matches
- · Matching constraints: each node matched at most once
- · Ensure min % of proposed matches are different/same type
- · Data: CORA citation network, nodes = papers, edges = citations

· Energy Production Knapsack

- Predict energy prices
- · Optimize total revenue
- · Limit on number of time periods we can generate energy
- · Data: ICON Energy Scheduling Challenge

Results: decision quality at test time

Objective: monthly % increase for portfolio optimization (SP500 and DAX), number of pairs successfully matched for Matching (CORA), and value of items for Knapsack (Energy).

	SP500	DAX	Matching	Knapsack
MIPaaL	$\textbf{2.79} \pm \textbf{0.17}$	$\textbf{5.70} \pm \textbf{0.68}$	$\textbf{4.80} \pm \textbf{0.71}$	$\textbf{507.70} \pm \textbf{0.471}$
MIPaaL-Warm	1.09 ± 0.18	0.68 ± 1.01	2.14 ± 0.51	499.60 ± 0.566
MIPaaL-Hybrid	1.08 ± 0.15	0.74 ± 1.10	3.21 ± 0.73	503.36 ± 0.578
MIPaaL-1000	2.60 ± 0.16	4.39 ± 0.66	3.45 ± 0.71	506.34 ± 0.662
MIPaaL-100	1.25 ± 0.14	0.35 ± 0.63	2.57 ± 0.54	505.99 ± 0.621
RootLP (Wilder et al. 2019)	1.97 ± 0.17	-1.97 ± 0.69	3.17 ± 0.60	501.58 ± 0.662
TwoStage	1.19 ± 0.15	0.70 ± 1.46	3.42 ± 0.78	501.49 ± 0.523

- MIPaaL gives 2x monthly returns on SP500 and 8x on DAX
- MIPaaL improves the objective by 40.3% and 1.2% for Matching and Knapsack respectively.
- MIPaaL outperforms all other variants considered.

Good ML Loss != Good Solutions

	SP500		DA	DAX Mat		ching	Knaps	Knapsack	
	MSE	Corr	MSE	Corr	CE	AUC	MSE	Corr	
MIPaaL	0.22 ± 0.043	$\textbf{0.15} \pm \textbf{0.015}$	0.13 ± 0.017	0.25 ± 0.032	0.66 ± 0.009	$\textbf{0.535} \pm \textbf{0.004}$	2774 ± 97.664	0.567 ± 0.002	
MIPaaL-Warm	$\textbf{0.11} \pm \textbf{0.010}$	-0.01 ± 0.010	$\textbf{0.09} \pm \textbf{0.067}$	0.07 ± 0.030	0.52 ± 0.003	0.509 ± 0.003	4660 ± 72.008	0.593 ± 0.003	
MIPaaL-Hybrid	$\textbf{0.09} \pm \textbf{0.030}$	$\textbf{0.13} \pm \textbf{0.013}$	0.13 ± 0.099	$\textbf{0.26} \pm \textbf{0.026}$	0.55 ± 0.002	0.502 ± 0.004	3824 ± 82.828	0.608 ± 0.006	
MIPaaL-1000	$\textbf{0.12} \pm \textbf{0.020}$	$\textbf{0.13} \pm \textbf{0.013}$	0.35 ± 0.010	$\textbf{0.27} \pm \textbf{0.035}$	0.61 ± 0.010	0.506 ± 0.007	5821 ± 154.793	0.590 ± 0.005	
MIPaaL-100	0.98 ± 0.089	0.12 ± 0.013	0.99 ± 0.060	$\textbf{0.26} \pm \textbf{0.037}$	0.54 ± 0.013	0.503 ± 0.004	5801 ± 145.331	0.553 ± 0.007	
RootLP (Wilder et al. 2019)	0.71 ± 0.178	$\textbf{0.15} \pm \textbf{0.013}$	1.06 ± 0.137	$\textbf{0.28} \pm \textbf{0.032}$	0.49 ± 0.007	0.513 ± 0.001	6267 ± 212.063	0.574 ± 0.002	
TwoStage	$\textbf{0.09} \pm \textbf{0.017}$	0.06 ± 0.011	$\textbf{0.02} \pm \textbf{0.066}$	0.13 ± 0.032	$\textbf{0.39} \pm \textbf{0.004}$	0.514 ± 0.005	$\textbf{684} \pm \textbf{15.568}$	$\textbf{0.649} \pm \textbf{0.002}$	

Transfer Learning

- Learn on one distribution of assets (30 SP assets) and test on another (30 other SP assets and 30 DAX assets), keeping the MIP size the same
- Learn on one size of MIPs (number of assets available, 30 SP) and test on larger MIPs (with more assets to choose from 50-500 SP)

		$SP-30^b$	DAX	SP-50	SP-100	SP-200	SP500
Decision Quality	MIPaaL	$\textbf{2.02} \pm \textbf{0.48}$	$\textbf{2.77} \pm \textbf{0.40}$	$\textbf{1.93} \pm \textbf{0.13}$	$\textbf{2.27} \pm \textbf{0.11}$	$\textbf{2.17} \pm \textbf{0.48}$	$\textbf{2.26} \pm \textbf{0.37}$
	RootLP	1.81 ± 0.44	1.74 ± 0.43	1.50 ± 0.09	1.58 ± 0.08	1.82 ± 0.41	1.90 ± 0.29
	TwoStage	0.71 ± 0.04	0.82 ± 0.54	1.58 ± 0.13	1.22 ± 0.09	1.50 ± 0.58	1.11 ± 0.35
	MIPaaL	4.81 ± 8.59	4.59 ± 8.80	5.42 ± 3.16	5.42 ± 2.37	5.25 ± 1.83	5.43 ± 1.67
ML Loss	RootLP	5.14 ± 1.02	5.39 ± 1.04	4.73 ± 3.17	4.88 ± 2.58	4.81 ± 1.91	4.83 ± 1.56
	TwoStage	$\textbf{0.08} \pm \textbf{0.05}$	$\textbf{0.07} \pm \textbf{0.03}$	0.08 ± 0.02	$\textbf{0.07} \pm \textbf{0.01}$	$\textbf{0.08} \pm \textbf{0.01}$	$\textbf{0.08} \pm \textbf{0.01}$

Decision-Focused Learning

- No need to silo out ML vs Optimization tasks
- When data is scarce, we want predictions to be accurate where it matters most for decision making
- Marrying predictive and prescriptive tasks in an end-to-end system

ML \longleftrightarrow Combinatorial Optimization

- Exciting and growing research area
- Design discrete optimization algorithms with learning components
- Learning methods that incorporate the combinatorial decision making they inform

Thank you!