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USC
Al for

Sustainability and Social Good

Biodiversity Conservation Disaster resilience Public Health & Well-being

Design of policies to manage limited resources for best
Impact translate into
large-scale decision / optimization and learning problems,
combining discrete and continuous effects




Constraint Reasoning and Optimization

Decision making problems of larger size and new problem structure
drive the continued need to improve combinatorial solving methods
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ML 4= Combinatorial
Optimization

Exciting and growing research area

Design discrete optimization
algorithms with learning components
Learning methods that incorporate
the combinatorial decision making
they inform

USC



ML Paradigm

Self-Supervised
Learning

Reinforcement
Learning

Supervised
Learning

ML-Driven Discrete Optimization

Infusing Discrete Optimization

with Machine Learning

Graph Optimization

General IP Heuristic

Exact Solving
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Heuristic Selection
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Integer Programming

Problem Type
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Infusing ML with Constrained

Decision Making

Decision-focused learning for
submodular optimization and LP
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Ta QOpportunity:
Ex s
*? Tailor algorithms to
"¢ 2 family of instances to

discover novel search strategies

A realistic setting

« Same problem is solved repeatedly with
data

* Delivery truck in Los Angeles:
« Daily routing in the same area with slightly different customers

* Typical approach:

» Customize branch-and-bound / approx. / heuristic



Mixed Integer Linear Programs (MIP) & their Applications

(MIP)  z* =min{c'x | Ax < b,x €R",x; € Z Y} € I}

Widely used to model real-world decision-making scenarios:

Conservation planning

THEKIDNEY CHAIN @ -(& Q O@)
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Kidney exchange Airline fleet and crew scheduling

USC



Branch-and-Bound in a Nutshell USC

minc’xs.t. Ax < b,x € {0,1}"
X

Repeat:
Select Node
Solve Relaxation
Add Cuts
Run Heuristics

Branch
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Task Issue Current Approach

Select Branching Variable what selection rule? single hand-designed ranking metric

Add Cuts which cuts to add? hand-designed ranking formula

Run Heuristics which heuristics to run?  run each every k nodes (fixed parameter k)

Select Node what selection rule? best-first
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Task Issue Current Approach

Select Branching Variable what selection rule? single hand-designed ranking metric

Add Cuts which cuts to add? hand-designed ranking formula

Run Heuristics which heuristics to run?  run each every k nodes (fixed parameter k)
Select Node what selection rule? best-first

e
Improve B&B with ML-driven strategies for these tasks.



Opportunities for Machine Learning in B&B USC

Task Issue Current Approach

Select Branching Variable what selection rule? single hand-designed ranking metric

Add Cuts which cuts to add? hand-designed ranking formula

Run Heuristics which heuristics to run? run each every k nodes (fixed parameter k)
Select Node what selection rule? best-first

Improve B&B with ML-driven strategies for these tasks.

» Most related work uses ML at a “meta level”, e.g. algorithm
portfolios, parameter tuning, strategy selection

» Here: use ML to discover novel strategies that dynamically
guide the behavior of the BnB algorithm



Learning to Branch

» Branching on the “right” variables can have a dramatic
impact on the number of nodes in B&B tree

» e.g. small backdoors in MIPs [Dilkina et al, CPAIOR 2009]

Branch on which variable?
By, By By EHCLY

Joint work with my PhD student Elias Khalil, and our collaborators
George Nemhauser, Le Song and Pierre Le Bodic [AAAI 2016]
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Learning to Branch uSCc

Ideally, select variables that lead
to small sub-tree & many

infeasible nodes ()

Strong Branching (SB) achieves that, X3?

but is extremely costly Xg?
Xk = 0 /

N

Given: dataset of An?

(variable features, Strong Branching score)

Learn: a ranking model that imitates SB




Learning to Branch
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Given: dataset of
(variable features, Strong Branching score)

Learn: a ranking model that imitates SB

yj feature 1 feature 2 feature 3 feature 4
xo | 0 0.4 0.4 0.3 0.9
xq | 1 0.3 0.9 0.4 0.9
x5 | O 0.2 0.2 0.6 0.7
Xe | 1 0.5 0.8 0.4 0.4

72 features, e.g.: objective coefficient, pseudocosts,
statistics for constraint degrees in node subproblem

+ pairwise product of features

labels: 1 if SB(x;) close to max. SB at node; 0 o.w.

USC
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Learn a function of the features that ranks variables with better
labels higher than other variables.

» “Learning to rank with pairwise loss", popular in web search

» Learn an f that minimizes the number of wrong pairwise
orderings between variables of the same node

» Ranking function f is linear in the features

» NP-hard but can optimize efficiently an upper bound as a
convex SVM optimization problem [Joachims2006].

» Open-source implementation SVM 7.
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html



Learning to Branch in Practice UuSC

Wildlife Corridor Design

80

® Pseudocost Branching = Learning to Branch

o)}
o

Optimality gap (%)

0
Gap (Geometric Mean) Gap (Median) Gap (Maximum)



Learning to Branch in Practice UuSC
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Road Network Design for Flooding

® Pseudocost Branching = Learning to Branch

00

Gap (Geometric Mean)Gap (Median)  Gap (Maximum)



Learning to Branch On-The-Fly (Per Instance) USC

MIPLIB2010 Benchmark

B Pseudocost [ Strong Branching + Pseudocost [ Learning to Branch
2,000,000

1,500,000

1,314,263

1,000,000

500,000

Number of Nodes

395,199

288,916 234,093

Medium (120 instances) Hard (148 instances)

Compared to PC on Hard instances:

33% fewer nodes, 14% less time




USC
Learning-Driven Algorithm Design

Takeaways

First ML framework for branching

Feature Engineering + Linear Ranking Model
Significant improvements on families of instances
On-the-fly version for limited data settings

OO s . - Exact Solving
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, Problem Type
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In many applications, obtaining good solutions quickly is
equally or more important than proving optimality.

J Found Incumbent! """ diving 1
x FAILED [ feaspump
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» Primal heuristic: an incomplete algorithm that can find a feasible
solution (and hence can improve the primal bound).

#incumbents found

#runs

» Time Cost: time for heuristic could instead be used to solve
additional nodes.

» Low Success Rate:

» Current approach in solvers: run heuristic every k nodes

— Frequency k: a parameter that is manually tuned.

Automate this decision-making task using ML and improve performance

Joint work with my PhD student Elias Khalil, and our collaborators
George Nemhauser, Shabbir Ahmed, Yufen Shao [[JCAI 2017]



Learning to Run Heuristics uSC

Given: dataset of
(node features, 0/1 success flag)

Data Collection Learn: a classifier of heuristic success
.
Machine Oracle:
Learning Success
Prediction
. o

New Instance

| |
\__/

/,\‘ ‘l/t"\
[\/I N,
() O ‘ Decision-Making 4. Decision: Run / Don’t run
A 3 Use Algorithm
~ NS oracle - 26

predictions



Learning to Run Heuristics in Practice uUSsCc

Forest Harvesting: =4
Generalized Independent Set ™

B Default 7 Learned
2,800 100

~
(6)]

2,100
60% reduction

1,400

Time (minutes)

N
(63}

700

Primal Integral . Time to Best Solution



USC
Learning-Driven Algorithm Design

IELGEVENR

First ML framework for heuristic selection in B&B
Dynamic, node-dependent decision-making

Forest Harvesting: 60% reduction in Primal Integral
MIPLIB2010 : Even on the heterogeneous benchmark 6%
reduction in Primal Integral

Heuristic Selection
Supervised Learning I ny @ /§ﬁ§> ()
Graph Optimization Integer Programming

Problem Type
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Learning-driven Algorithm Design

> Exciting and growing research area

> Many Open Directions:
> Local Search, Nonlinear Optimization,
Constraint Programming, Decision Diagrams
> Theoretical Foundations
> Lifelong Learning




The data-decisions pipeline

Many real-world applications of Al involve a

common template:

[Horvitz and Mitchell 2010; Horvitz 2010]

Observe data

= | Predictions | ™

Decisions

USC



: USC
Typical two-stage approach

Machine learning models Optimization algorithms
Greedy
Local search
Mixed'integer

Program
o\
\P re\a"a“o

Goal: maximize accuracy Goal: maximize decision quality




Google maps ust

aaaaaaaa

¥ 44 min

Predicted travel times Shortest path

' A 4

Predictive model Routing algorithm

32



. USC
Two-stage training

Data Predictive model Predicted delays Actual delays

Update model to make predictions
closer to actual delays

33



USC
Challenge

* Maximizing accuracy # maximizing decision quality
 “All models are wrong, some are useful”
* Two-stage training doesn’t align with end goal



USC
Key idea:

Decision-focused learning

Data Predictive model Predicted delays Optimization  Shortest path

\ algorithm

Update model to improve chosen 5. ¢
path (w.r.t. actual delays) =

Ferber et al (2019), Wilder et al. (2019), Amos and Kolter (2017)



USC
Decision-focused learning

Objective function f(x, 8)
x € {0,1}" are the decision variables
0 are unknown parameters (i.e. the coefficients in the objective e.g., true
travel times)

|dea: Take derivative of decision objective w.r.t. ML model weights, train model
via gradient descent (e.g. similar approach for convex opt. [Donti et al ’17])

dobj(decision)  dprediction ddecision dobj(decision)

dweights dweights Jdprediction ddecision

s\

o o S >
o o m A LA
‘ b o '.-;-_f‘.;\;\_jjg\’*“ I - -
e RS A
Predictive model Predicted delays Optimization  Shortest path

36
algorithm



Approach [Wilder, Dilkina, Tambe, AAAI 2019]

 Challenge: the optimization problem is discrete!
« Solution: relax to continuous problem, differentiate, round

Discrete Continuous
TS0 -, T O
x = binary decision x = fractional decision

F = continuous objective

*

d
« How to compute dxg ?

* |[dea: (locally) optimal continuous solution must satisfy KKT conditions (which are
sufficient for convex problems)

» The KKT conditions define a system of linear equations based on the gradients of the
objective and constraints around the optimal point.

» Differentiate those equations at optimum (e.g. convex opt. [Donti et al ’17])

USC

37



. USC
Linear programs .

Model exactly combinatorial problems like
bipartite matching, shortest path, mincut, etc. 0

Or correspond to a relaxation of other combinatorial problems
Standard form:

max 07 x
X
Ax <b
. 22 doesn’t exist!
o '
x*
 Solution: add a regularizer to smooth things out 0

max07x — y||x||3
X

Ax <D

* Now, Hessian is V2 f(x,0) = =2yl <0

» Provably (a) differentiable and (b) close to original LP
38



Results UuSC

« Combinatorial problems: encoded as LP, e.g. bipartite maximum matching

« Combinatorial problems: submodular maximization, e.g. influence
maximization

 Decision-focused has consistently better solution quality
* 15-70% improvement in solution over 2-Stage, across three domains

Table I: Solution quality of each method for the full data-decisions pipeline.

| Budget allocation Matching Diverse recommendation
k= 5) 10 20 - 5 10 20
NNI1-Decision | 49.18 & 0.24 72.62 + 0.33  98.95 £+ 0.46 2.50 £ 0.56 15.81 = 0.50 29.81 +0.85 52.43 +£1.23
NN2-Decision | 44.35 £0.56 67.64 +£0.62 93.59 +0.77 6.15 £+ 0.38 13.34 £0.77 2632+ 1.38 47.79 £1.96
NNI1-2Stage | 32.13 £2.47 4563 +376 61.88+4.10 2.99 +0.76 4.08 £0.16 842 +0.29 19.16 £0.57
NN2-2Stage | 9.69 £0.05 1893+ 0.10 36.16 =0.18 3.49 +0.32 11.634+£043 22794+0.66 4237 +£1.02

« But typically much less accurate (wrt AUC, MSE etc.)



.. . USC
Application: Tuberculosis treatment

* Follow-on work improving treatment in Indian TB system
* In collaboration with Everwell (NGO)
* Predict if patients will miss daily dose

» Optimize health worker visits subject to
knapsack constraints (LP)

* More in our paper [Killian et al, KDD 2019]

<
"

40



USC
Application: Tuberculosis treatment

Solution quality AUC

: — N 1 e

B Two-stage

B Two-stage
M Decision-focused M Decision-focused

Less “accurate”, but +15% successful interventions!

41



. . . USC
Decision Focused Learning for

Mixed Integer Programming (MIP) problems

* Many combinatorial problems do not have a nice relaxation-based
algorithm

« But we know how to differentiate through LP optimization,

* |dea: cutting planes for MIP results in LP with added cuts
« Differentiate through Cutting-plane-generated LP for training

* At test time, obtain predictions and solve MIP with Branch-and-Bound

[Ferber, Wilder, Dilkina, Tambe, ArXiv, 2019]



Domains UuSC

. Portfolio Optimization
. Predict monthly rate of return (% return)
. Optimize monthly return for portfolio
- Limiting risk, sector exposure, transactions...
. Data: SP500 (USA), DAX (Germany)

. Diverse Bipartite Matching

- Predict match success probability

. Optimize total number of successful matches

.- Matching constraints: each node matched at most once

. Ensure min % of proposed matches are different/same type

. Data: CORA citation network, nodes = papers, edges = citations
. Energy Production Knapsack

- Predict energy prices

. Optimize total revenue

- Limit on number of time periods we can generate energy

. Data: ICON Energy Scheduling Challenge



.. : : USC
Results: decision quality at test time

Objective: monthly % increase for portfolio optimization (SP500 and DAX),
number of pairs successfully matched for Matching (CORA), and value of items

for Knapsack (Energy).

SP500 DAX Matching Knapsack
MIPaal. 279 £0.17 5.70 £0.68 4.80+0.71 507.70 &+ 0.471
MIPaal.-Warm 1.09 £0.18 0.68 £ 1.01 2.14 +0.51 499.60 £ 0.566
MIPaal-Hybrid 1.08 +£0.15 0.74 +1.10 3.21 £0.73 503.36 £+ 0.578
MIPaal.-1000 2.60 £0.16 439 +0.66 3.45+0.71 506.34 &+ 0.662
MIPaal-100 1.25+0.14 035+£0.63 2.57+£0.54 505.99 + 0.621
RootLP (Wilder et al. 2019) 1.97 +0.17 -19740.69 3.17+0.60 501.58 + 0.662
TwoStage 1.19+0.15 070146 3.42+0.78 501.49 +0.523

« MiIPaal gives 2x monthly returns on SP500 and 8x on DAX

- MIPaaL improves the objective by 40.3% and 1.2% for Matching
and Knapsack respectively.

« MIPaal outperforms all other variants considered.



Good ML Loss != Good Solutions

USC

SP500 DAX Matching Knapsack

MSE Corr MSE Corr CE AUC MSE Corr
MIPaal. 022+£0.043 0.15+0.015 0.13+0.017 02510032 0.66=£0.009 0.535+0.004 2774 +£97.664 0.567 £ 0.002
MIPaal-Warm  0.11 £ 0.010 -0.01 =0.010 0.09 £+ 0.067 0.07 £ 0.030 0.52 £ 0.003 0.509 +0.003 4660 + 72.008  0.593 &+ 0.003
MIPaal-Hybrid 0.09 £0.030 0.13£0.013 0.13£0.099 0.26 +0.026 055+ 0.002 0.502£0.004 3824 £ 82.828  0.608 & 0.006
MIPaal-1000 0.12 +0.020 0.13+0.013 0.35+0.010 0.27 £0.035 0.61 £0.010 0.506 £0.007 5821 4+ 154.793  0.590 + 0.005
MIPaal.-100 098 £ 0.089 0.12 £ 0.013 0.99 £0.060 0.26 £0.037 0544+ 0.013 0.503 £0.004 5801 + 145.331 0.553 £ 0.007
RootLP (Wilderet al. 2019) 0.71 +£0.178 015+ 0.013 1.06 £0.137 028 +0.032 049+ 0.007 0.513 £0.001 6267 +212.063 0.574 + 0.002
TwoStage 0.09 £0.017 0.06 +0.011 0.02£0.066 0.13 £0.032 039+0.004 0.514+0.005 684+ 15568 0.649 + 0.002




Transfer Learning

USC

e Learn on one distribution of assets (30 SP assets) and test on another (30 other
SP assets and 30 DAX assets), keeping the MIP size the same
* Learn on one size of MIPs (number of assets available, 30 SP) and test on larger
MIPs (with more assets to choose from 50-500 SP)

SP-30"

DAX

SP-50

SP-100

SP-200

SP500

MIPaalL
RootLP
TwoStage

Decision Quality

2.02 +0.48
1.81 £0.44
0.71 £ 0.04

2.77 £ 0.40
1.74 £0.43
0.82 +0.54

1.93 +0.13
1.50 = 0.09
1.58 £0.13

2.27 +0.11
1.58 4+ 0.08
1.22 £ 0.09

2.17 + 0.48
1.82 + 041
1.50 = 0.58

2.26 + 0.37
1.90 + 0.29
1.11 £ 0.35

MIPaalL
RootLP
TwoStage

ML Loss

4.81 +8.59
5.14 £ 1.02
0.08 + 0.05

4.59 + 8.80
5.39 £ 1.04
0.07 + 0.03

542 +£3.16
473 £3.17
0.08 + 0.02

542 4+ 237
4.88 + 2.58
0.07 + 0.01

525+ 1.83
481 £ 191
0.08 + 0.01

543 £ 1.67
4.83 £+ 1.56
0.08 + 0.01




Decision-Focused Learning

No need to silo out ML vs Optimization tasks
When data is scarce, we want predictions to be
accurate where it matters most for decision
making

Marrying predictive and prescriptive tasks in an
end-to-end system

USC



ML 4= Combinatorial
Optimization

Exciting and growing research area

Design discrete optimization algorithms
with learning components

Learning methods that incorporate the
combinatorial decision making they inform

Thank you!
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