
Integrating
Machine Learning and Discrete Optimization

Bistra Dilkina

Assistant Professor of Computer Science, USC
Associate Director, USC Center of AI in Society

Invited Talk at CP 2019
Oct 3, 2019

AI for
Sustainability and Social Good

2

Biodiversity Conservation Disaster resilience Public Health & Well-being

Design of policies to manage limited resources for best
impact translate into

large-scale decision / optimization and learning problems,
combining discrete and continuous effects

Constraint Reasoning and Optimization

100
200

10K
50K

0.5M
1M

1M
5M

Variables

1030

10301,020

10150,500

1015,050

103010

W
or

st
 C

as
e

co
m

pl
ex

ity

Wind Farm Layout

Corridor Planning

Integrating renewables
in Power Grid

Multi-Agent
Systems

No. of atoms
on earth 1047

100 10K 20K 100K 1M

Decision making problems of larger size and new problem structure
drive the continued need to improve combinatorial solving methods

4

ML Combinatorial
Optimization

‣ Exciting and growing research area

‣ Design discrete optimization
algorithms with learning components

‣ Learning methods that incorporate
the combinatorial decision making
they inform

ML-Driven Discrete Optimization

Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised
Learning

Reinforcement
Learning

Self-Supervised
Learning

Greedy Heuristic

General IP Heuristic

Branching Heuristic Selection

Exact Solving

Infusing ML with Constrained
Decision Making

Infusing Discrete Optimization
with Machine Learning

Decision-focused learning for
submodular optimization and LP

MIP as a layer in
Neural Networks

A realistic setting
• Same problem is solved repeatedly with slightly

different data
• Delivery truck in Los Angeles:

• Daily routing in the same area with slightly different customers
• Typical approach:

• Customize branch-and-bound / approx. / heuristic

6

Tackling NP-Hard problems Design rationale
Exact algorithms Tight formulations, good IP solvers
Approximation algorithms Worst-case guarantees
Heuristics Intuition, Empirical performance

Opportunity:

Tailor algorithms to
a family of instances to
discover novel search strategies

9

Select Node
Solve Relaxation
Add Cuts
Run Heuristics
Branch

Repeat:

min
$
𝑐&𝑥 𝑠. 𝑡. 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ {0,1}4

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1

Learning to Branch

Given: dataset of
(variable features, Strong Branching score)

Learn: a ranking model that imitates SB

!" = 0 !" = 1

!& = 0 !& = 1!' = 0

!& = 0 !& = 1

!(?
!*?
…
!+?

!, = 0 !, = 1

Ideally, select variables that lead
to small sub-tree ↔ many
infeasible nodes

Strong Branching (SB) achieves that,
but is extremely costly

Learning to Branch

Given: dataset of
(variable features, Strong Branching score)

Learn: a ranking model that imitates SB

72 features, e.g.: objective coefficient, pseudocosts,
statistics for constraint degrees in node subproblem
+ pairwise product of features

labels: 1 if close to max. at node; 0 o.w.!"($%) !"

72 features, e.g.: objective coefficient, pseudocosts,
statistics for constraint degrees in node subproblem
+ pairwise product of features

labels: 1 if close to max. at node; 0 o.w.!"($%) !"

Learning to Branch in Practice

Wildlife Corridor Design

12 15

58

1 1 80

20

40

60

80

Gap (Geometric Mean) Gap (Median) Gap (Maximum)

O
pt

im
al

ity
 g

ap
 (%

)
Pseudocost Branching Learning to Branch

1.2 1.2

Learning to Branch in Practice

Road Network Design for Flooding

15 14

75

1 0 70

20

40

60

80

Gap (Geometric Mean)Gap (Median) Gap (Maximum)

O
pt

im
al

ity
 G

ap
 (%

) Pseudocost Branching Learning to Branch

0.7 0.0

Learning to Branch On-The-Fly (Per Instance)

Learning-Driven Algorithm Design

2
3

Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised Learning

Reinforcement Learning

Self-Supervised Learning

Greedy Heuristic

General IP Heuristic

Branching Heuristic Selection

Exact Solving

Takeaways
‣ First ML framework for branching
‣ Feature Engineering + Linear Ranking Model
‣ Significant improvements on families of instances
‣ On-the-fly version for limited data settings

26

Given: dataset of
(node features, 0/1 success flag)

Learn: a classifier of heuristic success

Learning to Run Heuristics in Practice

Forest Harvesting:
Generalized Independent Set

Learning-Driven Algorithm Design

Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised Learning

Reinforcement Learning

Self-Supervised Learning

Greedy Heuristic

General IP Heuristic

Branching Heuristic Selection

Exact Solving

Takeaways
‣ First ML framework for heuristic selection in B&B
‣ Dynamic, node-dependent decision-making
‣ Forest Harvesting: 60% reduction in Primal Integral
‣ MIPLIB2010 : Even on the heterogeneous benchmark 6%

reduction in Primal Integral

Learning-driven Algorithm Design
‣ Exciting and growing research area

‣ Many Open Directions:
‣ Local Search, Nonlinear Optimization,

Constraint Programming, Decision Diagrams
‣ Theoretical Foundations
‣ Lifelong Learning

The data-decisions pipeline

Many real-world applications of AI involve a
common template:

[Horvitz and Mitchell 2010; Horvitz 2010]

Observe data Predictions Decisions

Typical two-stage approach

Neural network

Gaussian process

Random forest

Logistic regression

Machine learning models

Goal: maximize accuracy

Greedy

Mixed-integer program

LP relaxation

Local search

Optimization algorithms

Goal: maximize decision quality

Google maps

32

Data

Predictive model

Predicted travel times

Routing algorithm

Shortest path

Two-stage training

33

Data Predictive model Predicted delays Actual delays

vs

Update model to make predictions
closer to actual delays

Challenge

• Maximizing accuracy ≠ maximizing decision quality
• “All models are wrong, some are useful”
• Two-stage training doesn’t align with end goal

34

Key idea:

35

Data Predictive model Predicted delays

Update model to improve chosen
path (w.r.t. actual delays)

Optimization
algorithm

Shortest path

Automatically shape the ML model’s loss by incorporating the
optimization problem into the training loop

Decision-focused learning

Ferber et al (2019), Wilder et al. (2019), Amos and Kolter (2017)

Decision-focused learning

36
Data Predictive model Predicted delays Optimization

algorithm
Shortest path

𝜕obj(decision)
𝜕weights

=
𝜕prediction
𝜕weights

𝜕decision
𝜕prediction

𝜕obj(decision)
𝜕decision

Objective function 𝒇 𝑥, 𝜃
𝒙 ∈ {0, 1}4 are the decision variables
𝜽 are unknown parameters (i.e. the coefficients in the objective e.g., true
travel times)

Idea: Take derivative of decision objective w.r.t. ML model weights, train model
via gradient descent (e.g. similar approach for convex opt. [Donti et al ’17])

• Challenge: the optimization problem is discrete!
• Solution: relax to continuous problem, differentiate, round

37

ContinuousDiscrete

𝑥 = binary decision 𝑥 = fractional decision
F = continuous objective

max
M∈N

𝑓 𝑥, 𝜃 max
M∈PQ4R(N)

𝐹 𝑥, 𝜃

Approach

• How to compute TM
∗

TV
?

• Idea: (locally) optimal continuous solution must satisfy KKT conditions (which are
sufficient for convex problems)

• The KKT conditions define a system of linear equations based on the gradients of the
objective and constraints around the optimal point.

• Differentiate those equations at optimum (e.g. convex opt. [Donti et al ’17])

[Wilder, Dilkina, Tambe, AAAI 2019]

Linear programs

Model exactly combinatorial problems like
bipartite matching, shortest path, mincut, etc.
Or correspond to a relaxation of other combinatorial problems
Standard form:

max
M
𝜃&𝑥

𝐴𝑥 ≤ 𝑏

• TM∗

TV
doesn’t exist!

• Solution: add a regularizer to smooth things out

max
M
𝜃&𝑥 − 𝛾 𝑥 Y

Y

𝐴𝑥 ≤ 𝑏

• Now, Hessian is ∇MY 𝑓 𝑥, 𝜃 = −2𝛾𝐼 ≺ 0
• Provably (a) differentiable and (b) close to original LP

38

𝜃

𝑥∗

𝜃

𝑥∗

Results

• Combinatorial problems: encoded as LP, e.g. bipartite maximum matching
• Combinatorial problems: submodular maximization, e.g. influence

maximization

• Decision-focused has consistently better solution quality
• 15-70% improvement in solution over 2-Stage, across three domains

• But typically much less accurate (wrt AUC, MSE etc.)

Application: Tuberculosis treatment

• Follow-on work improving treatment in Indian TB system
• In collaboration with Everwell (NGO)
• Predict if patients will miss daily dose
• Optimize health worker visits subject to

knapsack constraints (LP)

• More in our paper [Killian et al, KDD 2019]

40

Application: Tuberculosis treatment

41

0

1
AUC

Two-stage
Decision-focused

3

5
Solution quality

Two-stage
Decision-focused

Less “accurate”, but +15% successful interventions!

Decision Focused Learning for
Mixed Integer Programming (MIP) problems

• Many combinatorial problems do not have a nice relaxation-based
algorithm

• But we know how to differentiate through LP optimization,

• Idea: cutting planes for MIP results in LP with added cuts
• Differentiate through Cutting-plane-generated LP for training

• At test time, obtain predictions and solve MIP with Branch-and-Bound

42

[Ferber, Wilder, Dilkina, Tambe, ArXiv, 2019]

Domains
• Portfolio Optimization

• Predict monthly rate of return (% return)
• Optimize monthly return for portfolio
• Limiting risk, sector exposure, transactions...
• Data: SP500 (USA), DAX (Germany)

• Diverse Bipartite Matching
• Predict match success probability
• Optimize total number of successful matches
• Matching constraints: each node matched at most once
• Ensure min % of proposed matches are different/same type
• Data: CORA citation network, nodes = papers, edges = citations

• Energy Production Knapsack
• Predict energy prices
• Optimize total revenue
• Limit on number of time periods we can generate energy
• Data: ICON Energy Scheduling Challenge

Results: decision quality at test time

44

Table 1: Decision quality. Comparison in terms of realized optimization objective: monthly percentage increase for portfolio
optimization (SP500 and DAX), number of pairs successfully matched for Matching, and value of items for Knapsack. MIPaaL
gives 2x monthly returns on SP500 and 8x on DAX, and improves the objective by 40.3% and 1.2% for Matching and Knapsack
respectively. MIPaaL outperforms all other variants considered.

SP500 DAX Matching Knapsack

MIPaaL 2.79 ± 0.17 5.70 ± 0.68 4.80 ± 0.71 507.70 ± 0.471
MIPaaL-Warm 1.09 ± 0.18 0.68 ± 1.01 2.14 ± 0.51 499.60 ± 0.566

MIPaaL-Hybrid 1.08 ± 0.15 0.74 ± 1.10 3.21 ± 0.73 503.36 ± 0.578
MIPaaL-1000 2.60 ± 0.16 4.39 ± 0.66 3.45 ± 0.71 506.34 ± 0.662
MIPaaL-100 1.25 ± 0.14 0.35 ± 0.63 2.57 ± 0.54 505.99 ± 0.621

RootLP (Wilder et al. 2019) 1.97 ± 0.17 -1.97 ± 0.69 3.17 ± 0.60 501.58 ± 0.662
TwoStage 1.19 ± 0.15 0.70 ± 1.46 3.42 ± 0.78 501.49 ± 0.523

Table 2: ML performance on test set. TwoStage wins on ML metrics used for training (MSE, CE), whereas MIPaaL has inferior
ML metrics while improving decision quality. In all benchmarks, the predictive problem is hard as evidenced by the ML metrics
of all methods. Bolded entries have 95% confidence intervals overlapping with the best entry.

SP500 DAX Matching Knapsack
MSE Corr MSE Corr CE AUC MSE Corr

MIPaaL 0.22 ± 0.043 0.15 ± 0.015 0.13 ± 0.017 0.25 ± 0.032 0.66 ± 0.009 0.535 ± 0.004 2774 ± 97.664 0.567 ± 0.002
MIPaaL-Warm 0.11 ± 0.010 -0.01 ± 0.010 0.09 ± 0.067 0.07 ± 0.030 0.52 ± 0.003 0.509 ± 0.003 4660 ± 72.008 0.593 ± 0.003

MIPaaL-Hybrid 0.09 ± 0.030 0.13 ± 0.013 0.13 ± 0.099 0.26 ± 0.026 0.55 ± 0.002 0.502 ± 0.004 3824 ± 82.828 0.608 ± 0.006
MIPaaL-1000 0.12 ± 0.020 0.13 ± 0.013 0.35 ± 0.010 0.27 ± 0.035 0.61 ± 0.010 0.506 ± 0.007 5821 ± 154.793 0.590 ± 0.005
MIPaaL-100 0.98 ± 0.089 0.12 ± 0.013 0.99 ± 0.060 0.26 ± 0.037 0.54 ± 0.013 0.503 ± 0.004 5801 ± 145.331 0.553 ± 0.007

RootLP (Wilder et al. 2019) 0.71 ± 0.178 0.15 ± 0.013 1.06 ± 0.137 0.28 ± 0.032 0.49 ± 0.007 0.513 ± 0.001 6267 ± 212.063 0.574 ± 0.002
TwoStage 0.09 ± 0.017 0.06 ± 0.011 0.02 ± 0.066 0.13 ± 0.032 0.39 ± 0.004 0.514 ± 0.005 684 ± 15.568 0.649 ± 0.002

Table 3: Problem statistics and timing results. Timing results are average time per epoch, and the average percent of time taken in
one epoch to compute to Forward and Backward pass through the MIP Layer.

Num Instances Problem Sizes Solve Statistics
Train Val Test Bin Vars Cont Vars Cons Avg Cuts Epoch (s) Forward Backward

SP500 72 35 36 1000 3011 5026 2690 486 3.88% 25.46%
DAX 72 35 36 60 185 314 1387 47 15.63% 3.34%

Matching 16 11 11 2500 0 102 4984 604 2.13% 32.90%
Knapsack 56 19 19 48 0 1 1261 208 4.31% 0.36%

generated during training, the average time per epoch, and
the percentage of that time dedicated to the forward and back-
ward pass through the MIP layer in particular. The number of
added cuts in the forward pass is on the order of a few thou-
sands for all four problem types. SP500 and Matching take
longer per epoch than DAX and Knapsack. The table shows
that for both of these a big percentage of the train time is
dedicated to the backward pass through the MIP layer. This is
explained by the large size of the corresponding cutting plane
LPs for which the backward pass needs to solve through
the KKT conditions. On average, the forward pass through
MIPaaL takes 0.26, 0.10, 0.80, and 0.16 seconds for SP500,
DAX, Matching, and Knapsack instances respectively, and
1.72, 0.02, 12.42, and 0.14 seconds for the backward passes
respectively. Further timing information is provided in the
supplementary information.

Transfer learning: To test generalization performance,
we evaluate MIPaaL, RootLP, and TwoStage on transfer learn-
ing tasks for portfolio optimization. In this transfer learning

setting, models are trained on 30 assets randomly drawn from
SP500 (SP-30a), with data from Jan 2005 - Dec 2010. These
learned model are then evaluated on data from Dec 2013
- Nov 2016 to test various generalization aspects. To test
generalization across the data distribution we evaluate on 1)
SP-30b, a set of 30 randomly drawn assets from the SP500,
disjoint from SP-30a, and 2) the DAX, a separate index com-
prising 30 companies from a different country. Similarly, we
evaluate on instances with varying number of assets in SP-50,
SP-100, SP-200 and SP-500 which contain 50, 100, and 200
each with unique assets disjoint from SP-30a and SP-30b, as
well as on all 505 assets in SP-500.

Data distribution: The transfer learning results in Table 4
demonstrate that MIPaaL not only performs well across time
periods, but generalizes to unseen assets as well as unseen
countries. On SP-30b MIPaaL gives more than double the
improvement in the average rate of return over the standard
TwoStage approach, and a 59% improvement over RootLP,
indicating MIPaaL’s good generalization performance. Fur-

Objective: monthly % increase for portfolio optimization (SP500 and DAX),
number of pairs successfully matched for Matching (CORA), and value of items
for Knapsack (Energy).

• MIPaaL gives 2x monthly returns on SP500 and 8x on DAX
• MIPaaL improves the objective by 40.3% and 1.2% for Matching

and Knapsack respectively.
• MIPaaL outperforms all other variants considered.

Good ML Loss != Good Solutions

Transfer Learning
• Learn on one distribution of assets (30 SP assets) and test on another (30 other

SP assets and 30 DAX assets), keeping the MIP size the same
• Learn on one size of MIPs (number of assets available, 30 SP) and test on larger

MIPs (with more assets to choose from 50-500 SP)

Decision-Focused Learning
‣ No need to silo out ML vs Optimization tasks
‣ When data is scarce, we want predictions to be

accurate where it matters most for decision
making

‣ Marrying predictive and prescriptive tasks in an
end-to-end system

Thank you!

ML Combinatorial
Optimization

‣ Exciting and growing research area

‣ Design discrete optimization algorithms
with learning components

‣ Learning methods that incorporate the
combinatorial decision making they inform

