Complete Characterization of Tractable Constraint Languages

Andrei A. Bulatov Simon Fraser University

CP, 2019

Overview

- Nonuniform CSPs
- Restrictive in practice
- Ubiquitous in TCS, approximation
- Complexity classification, dichotomy
- Algebraic approach: proves dichotomy, used in other areas
- Algorithms

The Problem

Setup

- Fixed finite domain
 - (we will use some `derivative' domains, though)
- Constraint relations are from a fixed set $\ \Gamma,$ constraint language
- Relations are given explicitly (by a list of tuples)
- **CSP**(Γ)

What Would We Like to Know?

Complexity classification of nonuniform CSPs: For each Γ , what is the complexity of CSP(Γ)?

Generalized Satisfiability

Regular **SAT**: Decide whether a given CNF is satisfiable

Generalized SAT: Decide whether a given conjunction of predicates on {0,1} is satisfiable $(x \lor \overline{y} \lor z) \land (y \oplus \overline{t}) \land (t \neq u)$

SAT is NP-complete Gen SAT: depends on what predicates are allowed

Generalized Satisfiability II

Theorem (Schaefer, 1978)

Let Γ be a Boolean constraint language. Then **CSP(\Gamma)** is solvable in polynomial time if and only if one of the following conditions holds

```
(1) \Gamma is 0- or 1-valid
```

- (2) Γ is Horn or anti-Horn
- (3) Γ is binary (2-SAT)
- (4) Γ is affine

Otherwise $CSP(\Gamma)$ is NP-complete

k- and H-Coloring

k-Coloring: CSP(\neq) Instance: A graph G=(V,E)Objective: Is it k-colorable?

H-Coloring: Replace \neq with the edge relation of a graph *H*

Theorem (Hell, Nesetril, 1989) The **H-Coloring** problem is polytime iff *H* has a loop or is bipartite. Otherwise it is NP-complete.

CSP and Logic

Fagin's Theorem: A problem belongs to NP iff it is expressible in Existential Second Order Logic

2-Coloring:

$$\exists R, B\left(\forall x, y\left(E(x, y) \to \left(\left(R(x) \land B(y)\right) \lor \left(B(x) \land R(x)\right)\right)\right)\right) \land$$

[R, B is partition]

CSP and Logic: MMSNP

MMSNP (Monotone Monadic Strict NP): ESO formulas satisfying certain 3 syntactic conditions

Theorem (Feder, Vardi, 1993; Kun, 2013**)** A problem is expressible in MMSNP iff it is polytime reducible to a CSP

If any of the 3 conditions is removed, can express the entire NP

Dichotomy Conjecture

Feder/Vardi, 1993

Dichotomy Conjecture:

For every Γ the problem **CSP(** Γ **)** is either solvable in poly time, or is NP-complete

CSP and Logic: Datalog

Datalog is `logic language' simulating the `least fixed point' operator

$$P(x,y) := E(x,y)$$

 $P(x,y) := P(x,z), E(z,t), E(t,y)$
 $R(x) := P(x,x)$

Datalog gives CSPs solvable by local propagation algorithms

Barto-Kozik, B.: For non-uniform CSPs being solvable by Datalog is equivalent to a nice algebraic condition

Algebraic Approach

Invariants and Polymorphisms

Definition Relation *R* is invariant w.r.t. an *n*-ary operation *f* (or *f* is a polymorphism of *R*) if, for any $\bar{a}_1, \ldots, \bar{a}_n \in R$ the tuple obtained by applying *f* coordinate-wise belongs to *R*

 $\mathsf{Pol}(\Gamma)$ denotes the set of all polymorphisms of relations from Γ

Theorem (Jeavons et al., 1998) If $Pol(\Gamma) \subseteq Pol(\Delta)$, then CSP(Δ) is polytime reducible to CSP(Γ)

Polymorphisms: AntiHorn

Consider $R \in \Gamma_{antiHorn}$, say, $(x_1 \land x_2) \rightarrow x_3$

Then operation $min(x, y) = x \land y$ is a polymorphism of R

Indeed, take
$$(x_1, x_2, x_3), (y_1, y_2, y_3) \in R$$
, that is,
 $(x_1 \land x_2) \to x_3$ and $(y_1 \land y_2) \to y_3$

Then we need to check that

$$\big((x_1 \wedge y_1) \wedge (x_2 \wedge y_2)\big) \to (x_3 \wedge y_3)$$

Polymorphisms: 2-SAT

Consider binary
$$R = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Then operation $m(x, y, z)$:
 $m(x, x, y) = m(x, y, x) = m(y, x, x) = x$ is a
polymorphism of R (majority operation)

Indeed, apply *m* to the pairs of *R*, that is, $m\begin{pmatrix} 0 & 0 & 1 \\ m & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$m\begin{pmatrix}0&1&0\end{pmatrix} = \begin{pmatrix}0\end{pmatrix}$$

Near-Unanimity function:

 $n(x, x, \dots, x, y) = \dots = n(y, x, \dots, x) = x$

Polymorphisms: Affine CSP

Consider $R \in \Gamma_{aff}$, it is the set of solutions of a system $A \cdot \vec{x} = \vec{b}$ Then operation f(x, y, z) = x - y + z is a polymorphism of R(affine operation) Indeed take $\vec{x} \cdot \vec{x} \in C$ by that is $A = \vec{x} - A$ $\vec{x} = A$ $\vec{x} = \vec{b}$

Indeed, take $\vec{x}, \vec{y}, \vec{z} \in R$, that is, $A \cdot \vec{x} = A \cdot \vec{y} = A \cdot \vec{z} = \vec{b}$ Then

 $A \cdot (\vec{x} - \vec{y} + \vec{z}) = A \cdot \vec{x} - A \cdot \vec{y} + A \cdot \vec{z} = \vec{b} - \vec{b} + \vec{b} = \vec{b}$

Polymorphisms: Schaefer Revisited

Theorem (Jeavons et al., 1997-9)

Let Γ be a constraint language over {0,1}. Then **CSP(\Gamma)** is polytime iff Γ has one of the following polymorphisms: constant function, \lor , \land , majority, or affine. Otherwise it is NP-complete.

Polymorphisms: Tractability

Theorem (Jeavons et al., 1997-9; B., 2003-4) If Γ has one of the following polymorphisms, then **CSP**(Γ) is polytime: (1) Binary commutative operation f(x, y) = f(y, x)(2) NU operation

(3) Maltsev operation m(x, x, y) = m(y, x, x) = y

Algebraic Dichotomy

- The algebraic approach can be further developed to make use of universal algebra

Algebraic Dichotomy Conjecture (B.,Jeavons,Krokhin., 2000) If $CSP(\Gamma)$ is polytime if and only if Γ has a `nontrivial' polymorphism. Otherwise it is NP-complete

`Nontrivial' polymorphisms can be characterized in many ways. For instance, Γ has a such a polymorphism iff it has a weak NU:

$$n(x, x, \dots, x, y) = \dots = n(y, x, \dots, x)$$

Dichotomies: Small Domains

The Dichotomy Conjecture holds if Γ is a constraint language on

- 2-element set (Schaefer, 1978)
- 3-element set (B., 2002)
- 4-element set (Marcovic, 2010)
- 5-element set (Zhuk, 2015)
- 7-element set (Zhuk, 2016)
- 9-element set (Zhuk, 2016)

Dichotomies: Conservative CSPs

 Γ is said to be conservative if it contains every unary relation

Theorem (B., 2003**)** The Algebraic Dichotomy Conjecture holds for conservative languages.

Two Algorithms: Local Propagation

 Γ is said to have bounded width if is solved by local propagation (or by Datalog)

Theorem (Barto,Kozik, 2008) Γ has bounded width iff it has two weak NU polymorphisms of different arity

A variety of local propagation techniques are equivalent in this case

Two Algorithms: Few Subpowers

 Γ is said to have few subpowers if for any instance of CSP(Γ) there is a polynomial size representation of the solution space

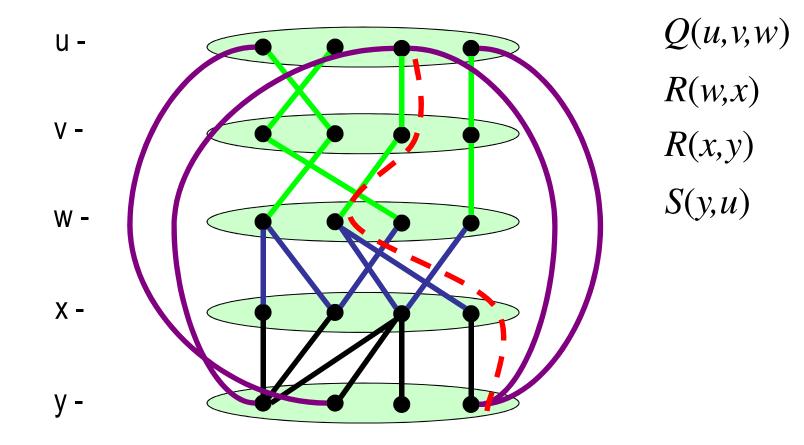
Theorem (Idziak et al., 2010) Γ has few subpowers iff it has an edge polymorphism, and **CSP(** Γ) is polytime in this case

General Dichotomy

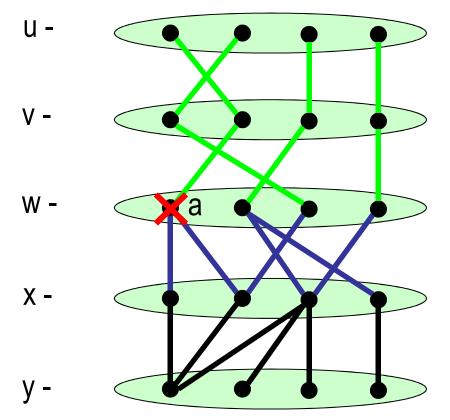
Theorem (B., 2017; Zhuk, 2017) CSP(Γ) is polytime iff it has a weak NU polymorphism. Otherwise it is NP-complete.

The Algorithm

Constraint Satisfaction Problem



Eliminating an Element



Is *a* a part of any solution? No? Remove it!

If *a* IS a part of a solution, is there a solution that doesn't involve *a*? Yes? Remove *a*!

Note that this procedure restricts the set D_{v} of possible values of a variable

Local Propagation: Maximum

u -

V -

W -

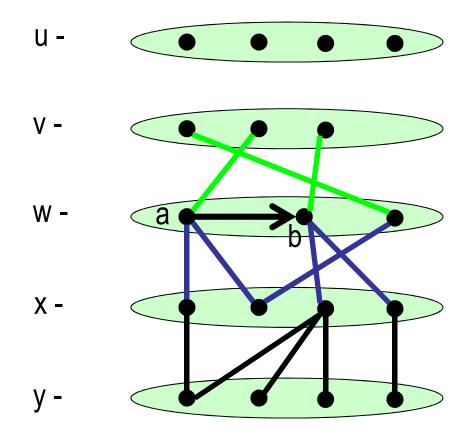
Х -

у -

Suppose the domain is ordered, consider operation max

The tuple consisting maximal elements in each coordinate of a relation *R* belongs to *R*

Eliminating an Element II



For any solution using *a* there is a solution using *b*

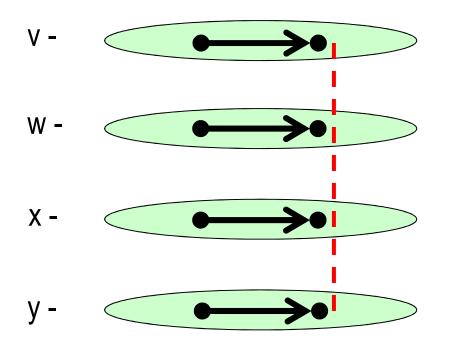
Idea: Establish sufficiently high level local consistency, then find such a redundant element

The Method

- Identify `base case' problems solved by existing algorithms, reduce an arbitrary problem to the `base case'
- If the problem is not `base case'
 - Subdivide into polynomially many subproblems
 - Solve them recursively
 - Then either conclude that the problem has a solution,
 - or reduce every `bad' domain by at least 1 element

Semilattice Pairs

a, *b* is a semilattice pair if there is a polymorphism f such that f(a,b) = f(b,a) = f(b,b) = b and f(a,a) = a



Local consistency + semilattice pairs is still not enough

Semilattice Free Languages

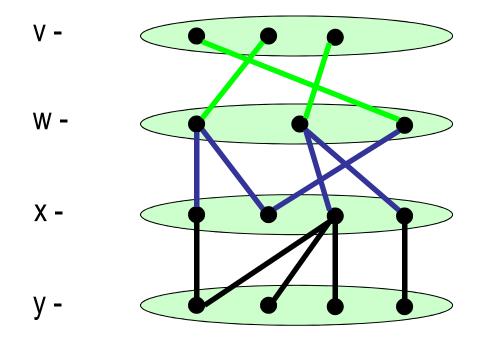
Language Γ is semilattice free if none of its domains has a semilattice pair

Theorem (Idziak et al., 2010 + B., 2016) If Γ is semilattice free, then **CSP(** Γ **)** is polytime solvable

The Base Case

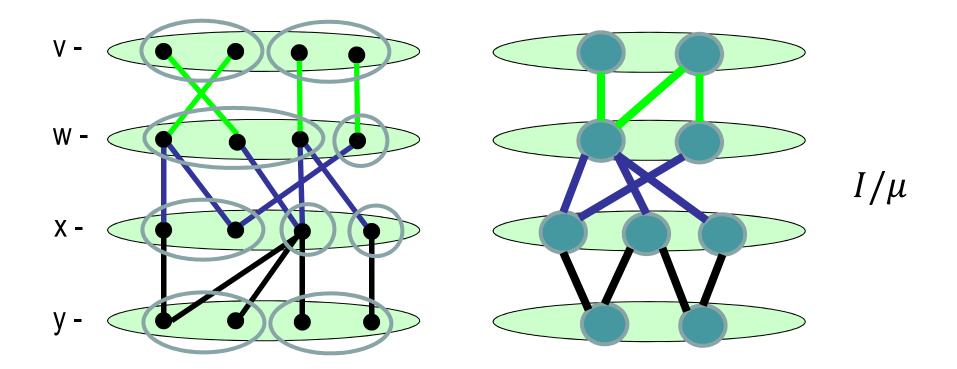
The `base case' is the problems whose domains are all semilattice free

Minimal Instance



Instance is minimal if every tuple of every constraint can be extended to a solution

Factor Instance



 $\mu_{v}, \mu_{w}, ...$ are partitions of the respective domains – have to be congruences of Γ

Block-Minimality

Instance I = (V, C)

Every domain comes in one of the two types:

- noncentral
- central

 μ_{ν} some congruence of the domain of ν such that μ_{ν} is equality for semilattice free domains

For variable v, congruences $\alpha \leq \beta$ of the domain of v, $W = W(v, \alpha, \beta)$ I_W is the instance restricted to W

Block-Minimality II

Block-minimality: For every $W = W(v, \alpha, \beta)$ and $\langle s, R \rangle$

- if $v \in V$ is central then I_W/μ is minimal
- if $v \in V$ is non-central then I_W is minimal

Block-Minimality Works

Theorem

For any locally consistent instance *I* there are congruences

- μ such that if
 - I/μ is block-minimal
- then *I* can be transformed to *I*' such that
- every domain containing a semilattice pair is reduced by at least 1 element;
 - I' has a solution if and only if I does

Establishing Block-Minimality

If W = W(v, Q, T) is central, then every domain of I_W/μ , is smaller than the original domains

Theorem If W = W(v, Q, T) is non-central then I_W can be decomposed into a constant number of instances over smaller domains

Open Problems

- Polymorphism oblivious algorithms and the Meta-problem
- Finer complexity classification

More Algebraic Approach

Algebraic approach is used for other constraint problems

- Polymorphism: decision, counting, enumeration, cardinality constraints, quantified, conjunctive queries, logic equivalence and minimization, social choice, etc.
- Valued CSPs: weighted clones
- Holant problems, partition functions: holant clones and functional clones
- Promise CSP: minions
- Many other problems: partial polymorphisms

Thank You!